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Kinematic explanations

Geometric explanation
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ds2 � �N 2dt2 � g���d� � �dt�2 � dl2 � g zzdz2 .   #   Metric

When two particle collide near BH, their energy in CM can grow unbound. Why ?

Metric coefficients do not depend on  t and φ
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Kinematics of the BSW effect
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t� � 0Forward in time condition
2
,

X
t

N
=ɺ X E Lω= −

Usual 0HX > Critical 0HX =

Near-critical 0HX > but is small

Classification of particles

Choice of tetrad basis

x 0 � t, x 1 � l x 2 � z x3 � �
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Zero angular momentum observer (ZAMO)

Equivalent name: locally nonrotating frame (LNRF) 
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ds2 � �N 2dt2 � g���d� � �dt�2 � dl2 � g zzdz2 .   #   

Rotates with geometry
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Limiting transitions for relative velocity

E c.m .
2 � ��p1

�
� p2

���p1� � p2�� � m1
2 � m2

2 � 2m1m2u1
�
u2� .   #   

� � �u1
�
u2� � 1

1 � w2
  #   w relative velocity

Unbounded energy in CM frame: w � 1 � � �

CM centre of mass

Some formulas of special relativity

v�1 � v 1n�1 v�2 � v 2n�2
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1 2 1 2
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− −
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a) v 1 � 1, v 2 � 1 �n�1n�2� is arbitrary 

b) v 1 � 1 v 2 � 1 in such a way that v i � 1 � A i� � � 1

A i constants

b1) �n�1n�2� � 1 w2 � 1 �
4A1A2�2

�1 � �n�1n�2��2
,   #   1w→

b2) �n�1n�2� � 1 w �
|A1 � A2 |
A1 � A2

� 1.   #   

c) v 1 � 1 v 2 � 1 �n�1n�2� is arbitrary 

w � 1

w � 1

w � 1
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Asymptotics near horizon of extremal black hole

Usual particle E � �HL � 0

2
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mN
E L

v
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0N→ 1v→
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LN
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g E Lφφ ω
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− n� pointed in “radial” direction

For any two such particles �n�1n�2� � 1.

2

1 2 ...H BN BNω ω= − + +

Critical particle

HN r r−∼

Collision of 2 usual

particles – no BSW effect
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2
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1

1
1 1v

L B
= − <

Critical particle
2

,
1

mN
E L

v
ω− =

−
0HE Lω− =

v �1� v �3�and have the same order

Collision between two usual particles

case b2). �n�1n�2� � 1 w � 1 No BSW effect

Collision between two critical particles

case c). v 1 � 1
2 1v < w � 1 No BSW effect
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Collision between usual and critical particles

Case a) w � 1 � � � BSW effect

1 1v < Proper distance infinite, proper time is infinite

2
2

2( )H

d r
d l

r r−
∼ l n ( )Hl r r− −∼

Rapid particle hits slow target
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Collision between massive and massless particles

Previous explanation cannot be used directly since

since (i) there is no comoving frame for a massless particle

(ii) in any frame, such  a particle moves always with the velocity of light. 

Some modifications needed

Collision between massive particle (electron) and massless

one (photon)
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Motion of photons in equatorial plane � � �
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�0 � �k 0 L kφ= k� wave vector

�0 Constant. Frequency measured at inifnity

�0 � �L � 0Forward – in - time condition

Affine parameter
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Energy in CM frame

E c.m.
2 � ��p� � k��2   #   Planck constant ħ=1

0k kµµ = 2 2

. . 2 ( ), ( ) .c mE m m uk uk u kµ µ= − ≡

� �uk� �
X 1X 2 � Z1Z2

N 2
�

L1L2
g��

,   #   
1 is electron, 2 is photon

1 1 1X E Lω≡ − 2 0 2X Lν ω= −

Z i � X i
2 � N 2b i , b1 � 1 �

L i
2

g��
, b2 �

L2
2

g��
,   #   
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k �i� � k �i� � k�h��i�, k �0� � k�h�
�0�

� �k�h��0� .   #   light-like  vector

2
(1) 2 L

k
gφφ

ν= − −
k �3� � L

g��
,   #   

� �
�0 � �N

N
.   #   

ZAMO

k2 � �k �1� �2
� �k �2� �2

k 2 �
��0 � �L�2

N 2
� �2   #   

2
,

1

mN
E L

v
ω− =

−

Massles versus massive

k �0� � �k�h �0�
�

�
�0 � �L

N
� �   #   

k 2 � �k �0� �2
� 0

n�2 � k�

k Horizon limit: �n�1n�2� � 1 when both usual

�n�1n�2� � 1 otherwise
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Different types of collisions

Case 1: electron is critical, photon is usual

Let us pass to the frame which is comoving with respect to the electron. Then, the

frequency  � � measured in this frame is related to the frequency  

in the ZAMO frame by the standard relativistic formula

1 2( ) [1 ( )]. kv V nnν γ ν νγ′ = − = −
�� � �

For a critical particle v � 1 Lorentz factor � is finite

�n�1n�2� � 1 � � �Photon usual

0 .
L

N

ν ω
ν

−
=

when 0N→

� � � �

BSW effect
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Result of two factors.

Infinite blue shift of radiation due to strong gravitating field near a black hole

red shift due to the Doppler effect since in the laboratory frame a receiver of 

radiation is moving apart from a photon 

v �1� � 0 k �1� � 0

first factor is infinite second one is finite

net outcome is due to blue shift.
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Case 2: electron is usual, photon is critical

�0 .
L

N

ν ω
ν

−
=

0 0HLν ω− = finite

Electron is usual 1V → � � �

�n�1n�2� � 1 � � � �

1 2( ) [1 ( )]. kv V n nν γ ν νγ′ = − = −
�� � �

Let in a flat space-time a photon with the frequency �

propagate in the laboratory frame and some observer moves with the velocity 

V with respect to it Then, in in its own frame, the observer measures the

frequency of the process which is equal to  � � �n�1n�2� � 1

For simplicity, we can take  �n�1n�2� � 0
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� � � �� � �

Then, the frequency measured in the frame of a receiver

due to the transverse Doppler effect

In the limit  1V→ the Lorentz factor  γ → ∞

� � � �

Even despite a moderate gravitational blue shift that resulted in a finite 

� the net outcome is infinite due to the Doppler effect.

BSW effect
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Case 3: both particles are critical

1V< � finite
1 2( ) [1 ( )]. kv V n nν γ ν νγ′ = − = −

�� � �

'ν also finite

No BSW effect

Both factors - gravitational blue shifting and the Doppler effect are restricted and 

cannot give rises to infinite energies
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Case 4: both particles are usual

� � 1
N � � 1

N

,E L mNω γ− =
2

1

1 v
γ =

−
0 .

L

N

ν ω
ν

−
=

2
(1) 2 L

k
gφφ

ν= − −

v �3� � LN
g�� �E � �L�

,   #   

k �3� � L
g��

,   #   

v �1� � 1 � N 2

�E � �L�2
�1 � L2

g��
� .   #   

1 � �n�1n�2� � N 2 .   #   1 2( ) [1 ( )]. kv V n nν γ ν νγ′ = − = −
�� � �

Numerator and denominator compensate each other, 'ν

finite, no BSW effect
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Play of two factors: Doppler effect (DE) and gravitational blue 

shift (GB)

Finite redshift - DE . GB infinite

Effect exists

DE infinite, GB finite Effect exists

DE and GB finite, no effect

Infinite DE compensated by infinite GB

Outcome is finite, no effect

Case 1: electron is critical, photon is usual

Case 2: electron is usual, photon is critical

Case 3: both particles are critical

Case 4: both particles are usual
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Two viewpoints

1) ZAMO (static in limit of vanishing rotation)

2) Observer who falls in BH

How observer 2 explains BSW effect? Horizon is essential ingredient of

BSW. But it does not reveal itself for observer 2.

Energy in CM frame is scalar. It cannot be very large in one frame and

modest in another one.

More close examination of vicinity of horizon, relationship between

two kinds of observers

Ideal tool – acceleration horizon, exact formulas

Appear on its own right in BH thermodynamics in limiting transition form 

nonextremal state to extremal, from rapidly rotating discs to black holes,

AdS/CFT correspondence, etc.
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Bertotti-Robinson space-time 

ds2 � �fdt2 � dr 2

f
� r 2�d�2 � sin2�d� 2�.   #   f � �1 � r�

r �2

Extremal RN black hole

r � r � � 	x, t � t
	

  #   	 � 0Take limit

ds2 � �dt2 x2

r�
2
� r �

2 dx 2

x 2
� r �

2 �d�2 � sin2�d� 2�.   #   

Exact solution of Einstein-Maxwell equations
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Horizon is pure kinematic effect

x � 1 � y2 cos t	 � y,   #   t �
1 � y2 sin t	

1 � y 2 cos t	 � y
.   #   

y � 1
2
�x � xt2 � 1

x �,   #   cos t	 � 1
2

�x � 1
x � xt2�

1 � 1
4
�xt2 � x � 1

x �
2

.   #   

ds2 � �dt	2�1 � y 2� �
dy 2

1 � y 2
� d�2 � sin2�d�2 .   #   
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BSW effect: general formulas 

E c.m .
2 � m1

2 � m2
2 � 2m1m2�   #   � � �u1

�
u2� ,   #   

� �
X 1X 2 � Z1Z2

m1m2f
.   #   

Near horizon f is small. Particle 1 is (near)critical,

� �
X 2�r ��

m1m2 f
�E 1 � E 1

2 � m1
2 �   #   f � x c

2

� � 1
x c

.   #   
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Paradox of two frames

m dt	

d

� X	

1 � y 2
,   #   m

dy

d

� Z	 ,   #   X	 � E	 � q � qy,   #   

Z	 � X	 2 � m2�1 � y 2� .   #   

� �
X	 1X	 2 � Z	 1Z	 2

1 � y 2
,   #   m1 � m2 � 1

E	 1,2. For any fixed energies  and for any y

Properties of critical and usual paricles separately (definition from original

frame)
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X 1�r �� � 0

Critical particle

E 1 � q1 � q X 1 � qx

x 1 � x 0 exp��	
�, 	 � q2 � 1 ,   #   t1 �
q exp�	
�

x 0	
�

q

	x 1
,   #   

X	 1 � E 1y1 , E	 1 � E 1 � q.   #   
y 1 � 1

2
� 1

x 1

1
	2

� x 1�.   #   
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Usual particle

x2 � �E 2 sin 
,   #   t2 � � 1
E 2

cot 
 � t0 � 1
x 1 � x 2

E 2
2

� t0 .   #   


 � 0 at the moment of crossing the horizon 


 � 0 before it. 

2

2 0 0 2

2 2

cos sin 1 ,
p x

y t p x t
E E

τ τ= − = + −

2

2 2 0

2

1 1
[( ) ].

2
p E Et

E
= − +

2

2 2 2 0 2

2

1 1
( ).

2
X E E t E

E
= = + +ɶ ɶ

X	 1 � E 1y1 , E	 1 � E 1 � q.   #   

usual

critical coincides in both frames

does not coincide
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Explanation of the paradox

(i) both particles should meet in the same point and 

(ii) this point should be near the horizon. 

large constant of integration  

and the very large energy  

t0

E	 2 � t0
2

t1 � t2 , x 1 � x 2 ,   #   t	1 � t	2 , y 1 � y 2 .   #   

(see below)

Collision at small x � x c t0 � E � 	
x c	

� O�x c�   #   

t0 � x c
�1 � �.   #   p � X	 2 � t0

2 � 1
x c

2
� �   #   
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Second frame

y � y c y c � 1
x c

� �.   #   

� �
E 1 � E 1

2 � 1

y c
X	 2 � x c

�1   #   

grows much faster than y,

2 2

2 0 cX t x−ɶ ∼ ∼

1 � y c � X	 2 .   #   

X 2 is not invariant under transformation Finite in frame 1, unbound in frame 2

Two alternative descriptions

Frame 1 horizon, finite energies

Frame 2 no horizons, unbound energy of usual particle
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X � E � q� � N

1 � V 2
.   #   

Energy conservation

V � 1 usual

V � 1 critical

Frame 2

E 1y �
1 � y 2

1 � V 1
2

.   #   

As one approaches horizon, y � �

V 1 � 1 � 1
E 1

2
� 1,   #   

Usual particle. V � 1

Relative velocty approaches 1
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Simplified example: Minkowski and Rindler metrics

ds2 � �dt2x 2 � dx 2 ,   #   Consider quadrant t � 0 x � 0

ds2 � �dt	2 � dy2 .   #   y � x cosh t,   #   

t	 � x sinh t   #   

x2 � y 2 � t	2 ,   #   tanh t � t	
y .   #   

Horizon x � 0 corresponds to y � 
t	

Killing vector �	 � � �1, 0�

Another Killing vector �� � �1, 0�

In Minkowskian coordinates

in the Rindler coordinates 

In Minkowskian it reads �� � �y, t	�.   #   
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Geodesics y � Vt	 � y 0 ,   #   t � 
E	

2

1

1
E

V
=

−
ɶ

m=1

E � �u��� E	 � �u��	 �and

E � E	 y 0 .   #   

x�cosh t � V sinh t� � y0 � E

E	
.   #   

2( 1)
, . 

EE V E
y

x

α α
α

α
+ −

= =
ɶ
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Collision

� �
X 1X 2 � Z1Z2

x 2
,   #   Z i � E i

2 � x2

0i iX E= ≠ no strictly critical particles near-critical X 1small

Collision at small x 0 near horizon

If E 1 � X 1 � O�x 0� E 2 � O�1� � � x 0
�1

grows unbound

Rindler frame

Minkowski frame

� � E	 1E	 2 � E	 1
2 � 1 E	 2

2 � 1 .   #   

is no small denominator here 
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Let, for simplicity, particle 2 have  V 2 � 0

y 2 � E 2 � const E	 2 � 1

E 1 � x 0 � 1Let so  � 1.

Then, E	 1 �
E	 2

E1



� 2�1
� x 0

�1 grows unbound

E	 � 1

1 � V 2
  #   

BSW effect

For near-critical 1 1V → in contrast to previous case

Rindler metric versus BR metric

Rapid particle hits slow one, horizon, finite individual energy

Effectively, no horizon, large individual energy of one of two paticles


