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lightlike vectors  

Point of collision. Basis

l� N�

Standard choice: 1 timelike, 3 spaclike

Now: 2 lightlike, 2 spacelike a, b

0l l N Nµ µ

µ µ= =

Normalization: 1l Nµ µ = −

2

l N
t

µ µ
µ +
= 1t tµ µ = −

2

l N
e

µ µ
µ −
= 1e eµ µ = +

0l a N aµ µ

µ µ= =
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g�� � �l�N� � l�N� � ���   #   

( ) ( )a b

abg h hαβ α βη= ( 1,1,1,1)ab diagη = −

(0)h tµ µ= (1)h eµ µ= (2)h aµ µ= (3)h bµ µ=

Standard presentation

With the help of lightlike basis

��� � a�b� � a�b�

l���� � N���� � 0
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u i
�
� l�

2� i
� � iN� � s i

�
, s i

�
� A ia� � B ib�   #   

Decomposition of the four-velocity of particle i

1u uµ µ =−

� i � ��u il�,   #   � i � � 1
2
�u iN��1 .   #   ( )ab a bµ µ=

All vectors future-directed � i � 0 0iβ >

s i
�
s i� �

� i
� i � 1.   #   

� i � � iCase s i
�
� 0 radial motion (see below)
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� �u1u2� � 1
2
�
� 1

�2
�

�2

�1
� � �s1s2�.   #   

The energy in the centre of mass frame 

2 2

. .cmE P=−

E c.m .
2 � m1

2 � m2
2 � 2m1m2�u1u2�

1 1 2 2P mu muµ µ µ= +

E c.m.
2 � m1

2 � m2
2 � m1m2�

�1

�2
�

�2

�1
� 2�s1s2��.   #   
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Ingoing versus outgoing particles in the vicinity of the horizon: general approach

Case 1 

Particle 1 moves in outward direction near horizon. Vectorl� Is close

to horizon and becomes its generator when horizon is approached. Particle

Does not cross horizon, component along N�
almost vanishes

1 1 1 1 1 1

1

, 
2

l
u N s s Aa Bb

µ
µ µ µ µ µ µβ

α
= + + = +

1 0β→
1

1 0.
( ) 1ss

β
α = →

+

2 2 2 1 2
. . 1 2 1 2 1 2

2 1

[ 2( )]cmE m m mm ss
β β

α α
= + + + − →∞

for any particle 2 Direct consequence of blue shift
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Case 2

Both particles move towards the horizon 

Frame of the centre of mass falls down with both particles 

No direct consequence of blue shift

For any nonzero  �1 �2

1 0α = Is NOT automatically, this is condition on parameters

If this condition is satisfied, E c.m .
2 � �. BSW effect

Relationship between energy and angular momentum or energy and 

Electric charge
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Geometrically

C is critical particle

U is usual particle

Proper time grows unbound (T. Jacobson, 

Grib and Pavlov, O. Z.)

Kinematic censorship

Difference between cases 1 and 2
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In terms of Kruskal coordinates

ds2 � �CdUdV � � abdx adx b   #   C is some function bounded and analytical near horizon

U and V are lightlike coordinates

Future horizon U=0 uU � � � 0

( ) 1U Vuu Cu u= =−Normalizaiton condition

� � � � U dU
d�

� U,   #   

� � � lnU � �   #   

For critical trajectory proper time diverges
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Examples

Radial motion in Reissner-Nordstom black hole

ds2 � �dt2N 2 � dr 2

N 2
� r 2d� 2 .   #   d�

2 � sin2�d	 2 � d�2

N 2 � 1 � 2M
r �

Q2

r2
M is the black hole mass, Q is its charge  

Pure radial motion

u0 � X
N 2m

, u1 � 
 Z
mN

  #   


 � �1 for direction towards horizon


 � �1 for direction away from horizon

X � E �
qQ
r ,Z � X 2 � m2N 2 ,   #   

E is energy
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�� � �1, 0, 0, 0�Killing vector

Two lightlike vectors

l� � �1,N, 0, 0�, N� � 1
2
� 1
N 2

,� 1
N

, 0, 0�,   #   

�Nl� � �1 a� � r b	 � r sin �

� ��u� � X
m   #   � � ��ul� � X � 
Z

m � 0.   #   

��uN�N 2 � 1

2

X�
Z
m � 0 is finite for both signs of  ε
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� � mN 2

X � 
Z .   #   X 2 � Z2 � m2N 2

� � �   #   for radial motion

Case 1


 � �1 � � X � Z
m .   #   

� � 0 outside horizon

In the horizon limit N � 0 Z � X

For any parameters, � � 0
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Case 2


 � �1 On horizon, H HZ X=

�H �
2XH
m � 0 ���u�H �

XH
m � 0

If for particle 1 XH � 0 qQ � ErH

�1 � �1 � 0it follows that when horizon is approached

Critical particle

E c.m .
2 � �
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More general setting

Consider vector  timelike outside horizon �� N2 � ����� � 0

�� � 1
2
l� � N 2N� .   #   

Let, in near-horizon limit, condition 
1 0β→ be satisfied

Two properties hold.

��u� finite1)

Then, vector  ��

becomes lightlike in this limit.

Proof. It follows from u i
�
� l�

2� i
� � iN� � s i

�
, s i

�
� A ia� � B ib�   #   

� � 0 and 0α →

in this limit  

��u� � N 2�Nu� � � N 2

2� finite, so N � 0

becomes lightlike
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2) Let us, instead of � � 0 assume that ( ) 0uξ →

Then, � � 0 and becomes lightlike in this limit ��

Proof. Multiplying �� � 1
2
l� � N 2N� .   #   u�

Both terms have the same sign (negative). Therefore,

each of them vanishes separately in this limit, so  

� � 0 N 2 � 0

As a consequence E c.m .
2 � �

2

.
2 2

N
uµ µ

β
ξ

α
= − −

we obtainby

ressembles situations with Killing vector but we did not use Killing equations
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Axially-symmetric rotating black hole

ds2 � �N 2dt2 � g		�d	 � �dt�2 � dl2 � g zzdz2   #   

includes the Kerr and Kerr-Newman black holes 

t� � u0 � X
N 2

, X � E � �L   #   m � 1

	� � L
g		

� �X
N 2

,   #   l� � 
 Z
N

, Z2 � X 2 � N 2�1 � L2

g		
�   #   

u0 � �E energy u	 � L angular

forward in time condition t� � 0 E � �L � 0
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l� � ��N 2 ,N, 0, 0�   #   N� � 1
2N 2

��N 2 ,�N, 0, 0�   #   

�Nl� � �1.   #   �� � � 1
�
� ��2

�
  #   

� 1
�
� �1, 0, 0, 0� translations in time

� 2
�
� �0, 0, 1, 0� rotations

N � 0On horizon vector

0µ

µξ ξ →

µξ becomes lightlike
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b z � g zz

Nonzero components of other vectors

a	 � g		 a0 � ��a	

��u�� � X

�
� � 1 � L2

g		
.   #   

If � � 0 also � � 0

β α≠ but they proportional to each other:

� � ��ul� � X � 
Z
m � 0.   #   � � mN 2

X � 
Z .   #   
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Case 1


 � 1

N � 0

in horizon limit  

Z � X again � � 0 � � 0

Case 2

 
X Z

m
β

−
=

2

.
m N

X Z
α =

+

 
X Z

m
β

+
=

2

.
m N

X Z
α =

−

In hoizon limit
2

 HX

m
β→ Critical value 0HX =

for any particle
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As X E Lω= − critical condition gives us

H HE Lω=

Then, according to previous formulas,

E c.m .
2 � �
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THANK YOU


