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; ; 0α β β αξ ξ+ =

Killing vectors

Metric is invariant under transformations

ɶx x x
αα α αξ δλ→ = + � ( ) ( )g x g xγ γ

αβαβ =

0
dI

dτ
= I u α

α ξ= four-velocity tangent to geodesics

u α

; ; ( ; )( ) 0
dI

u u u u u u
d

α β α β α β
α β α β α βξ ξ ξ

τ
= = + =
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ds2 = −N 2dt2 + gφdφ − ωdt2 + dr 2

A
+ gθdθ2 ,   #   

Metric does not depend on ,t φ

Two integrals of motion
( )tE p µ

µξ= −

Angular momentum
( )L p φ µ

µξ=

Killing vectors responsible for time translations and rotation

( ) (1, 0, 0, 0)t µξ = ( ) (0,1, 0, 0)φ µξ =
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Event horizon

Hypersurface 1 2 3( , , , ) 0f t x x x =

Normal vector n fµ µ∂∼

0df fdx µ
µ= ∂ = taken within this hypersurfacedx µ

Lightlike hypersurface 0n n µ
µ =

n dx µ
µ ∼ In this direction, 2 0ds dx dxµ

µ= =

tangent to leg of light cone
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One-way membrane

Trivial case: t x= ±

Nontrivial: closed, r=const
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2 2
00g N g φω= − + 0g gφ φω= −

Metric

00
2

1
g

N
= − 0

2
g

N
φ ω

= −

2

2

1
g

g N
φφ

φ

ω
= −

Contravariant components
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Equations of motion

, tu uφ

0 0 0t
tu g u g uφ

φ= +

2
t X

m u
N

=
2

L X
m u

g N
φ

φ

ω
= +

Observer on circular orbit

2d L X
N

d t g φ

φ
ω= +

2
c o n s t

π
θ = =

X E Lω= −
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2d L X
N

d t g φ

φ
ω= +

Zero angular observer (ZAMO)

L=0 d

d t

φ
ω=

ds2 = −N 2dt2 + gφdφ − ωdt2 + dr 2

A
+ gθdθ2 ,   #   

Dragging effect

Locally nonrotating frame (LNRF)

L=0 but d

d t

φ
ω≠

If 0
d

d t

φ
= 0L ≠
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More on kinematics in curved space-time

Let a particle (observer) move with the four-velocity Uμ

Locally, it defines the hypersurface orthogonal to it

hμν = gμν+UμUν   #   Induced metric hμνUν = 0   #   hμνhνσ = hμν   #   

dτobs =−dxμUμ.   #   0obsdτ =If two events are simultaneous

proper distance dl2 = hμνdxμdxν   #   

ds2 = gμνdxμdxν = dl2−dτobs
2   #   

Local velocity V2 = dl
dτobs.

2

.   #   2 2 2(1 ).obsd d Vτ τ= −
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Observer who is sitting at rest with respect to a given coordinate frame:  

xi = const i = 0,1,2,3

Examples of frames.

Comoving observer

Uμ = U0,0,0,0.   #   g00U02 =−1,   #   

Uμ = 1
−g00

1,0,0,0.   #   U0 =− −g00 ,Ui =
gi0

−g00
.   #   

h00 = 0,   #   

h0i = 0,   #   

hik = gik −
g0ig0k
g00

  #   condition of simultaneity

dt =−dxi g0i
g00

  #   

Landau and Lifshitz eq. 84.7 eq. (84.14)
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ZAMO frame (zero angular momentum observer)

Ui = 0By definition If i is angular variable, standard ZAMO

Normalization condition gives us

Uμ = 1
N
1,Ni,0,0   #   Vi = Ui

U0
=Ni = dxi

dt osb
.   #   

.obsd dx U Ndtµ
µτ =− =

Uμ =−N1,0,0,0.   #   

and its properties
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From Ui =
gi0

N
+

gikNk

N
= 0   #   we find

g0i =−gikNk   #   U0 =−N=
g00

N
+

g0iNi

N
  #   

g00 =−N2+g0iNiNk.   #   

Result:

ds2 =−dt2N2+gijdxi −Nidtdxj −Njdt   #   

h00 = g00+N2,h0i = g0i,hik = gik.   #   

ds2 =−dt2N2+gφφdφ−ωdt2+grrdr2+gθθdθ2.   #   
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g0φ =−gφφω,   #   h00 =ω2gφφ, h0φ = g0φ, hφφ = gφφ   #   

Nφ =ω,Nr =Nθ = 0.   #   

world line of the ZAMO is orthogonal to the hypersurface t=const

nμ ∼ t,μProof ni = 0 Thus vectors nμ and Uµ

Within this hypersurface, nμdxμ = nidxi = 0.
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Energy and momentum in different frames

E=−muμξμ =−mu0   #   Killing energy, observer at infinity

Erel. =−muμUμ ≡mγ=−mu0U0+uiUi,   #   

Energy, measured by local observer with four-velocity Uμ

whence .

0

i rel
i

E
E mu V

U
− =

0

i
i U

V
U

=

Energy in terms of relative velocity

obs
U dx d

u U
d d

µ
µµ

µ

τ
γ

τ τ
=− =− =−

2 2 2(1 ).obsd d Vτ τ= −

γ= 1
1−w2

, Erel. =
m

1−w2
.   #   
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E−piVi = m
1−w2

1
U0

,   #   pμ =muμ

Flat spacetime

U0 = 1

1−V2
=γ

( )(0) 2
,

1

m
E E pV

w
γ= = −

−

��

Static observer

00
. 00 21

rel

m g
E E g

w

−
= − =

−
eq. (88.9) of Landau and Lifshiitz
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ZAMO observer

E−muiVi =Erel.N= mN
1−w2

  #   

In the axially symmetric case, the angular momentum of a particle

is conserved muφ =L

E−ωL=Erel.N= mN
1−w2

.   #   
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Ergoregion

ds2 = −N 2dt2 + gφdφ − ωdt2 + dr 2

A
+ gθdθ2 ,   #   

Is it possible for particle to have

ds2 = −N 2dt2 + gφdφ − ωdt2 + dr 2

A
+ gθdθ2 ,   #   

constφ = ?

2
2 2 2

00 ,
dr

ds g dt g d
A θ θ= + +

In ergoregion, all terms positive Interval spacelike, impossible

0 0 0g >

00
. 00 2

0
1

rel

m g
E E g

w

−
= − = >

−

Outside ergoregion one can choose static frame.

0 0 0g <

But inside, 0 0 0g > this formula does not work

Energy can be positive or negative
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Boundary of ergoregion 0 0 0g =

in the limit

ν0 = ν −g00 .   #   

Limit of staticity, infinite redshift

For a static observer

00 0g → and any finite νν

0 0ν →

But for moving observer this is not so
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Penrose process 0 1 2E E E= + 2 1 00,E E E< >
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Circular orbits

( ) ( )t
µ µ µ

φη ξ ξ= +Ω

0tu uφ ≠ t

d u

dt u

φφ
= =Ω

u
µ

µ

α
α

η

η η
=

−

Surface at which 0u uµ
µ =

2
( ) ( ) ( ) ( ) ( ) ( )2 0t t t

µ µ µ
µ φ µ φ φ µξ ξ ξ ξ ξ ξ+ Ω +Ω =

( ) ( ) ( ) ( ) 00t t t tg gµ µ µ
µ µνξ ξ ξ ξ= =

( ) ( ) ( ) ( )t t g gφ µ µ
φ µν φ φ φξ ξ ξ ξ= =

( ) ( ) ( ) ( ) 0t tg gµ µ µ
φ µ µν φ φξ ξ ξ ξ= =
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2
00 02 0g g gφ φφ+ Ω +Ω =

2
000

g g gg

g g
φ φφ

φ φ
±

−
Ω =− ±

2 2
00g g g gNφ φ φ− = N

gφ

ω±Ω = ±

( )( )u uµ
µ + −Ω−Ω Ω−Ω∼

Time-like 0u uµ
µ < if

− +Ω <Ω<Ω
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Outside ergoregion,N

gφ

ω±Ω = ±
2 2

00 0g N gφω=− + <

0 , 0− +Ω < Ω >

Corotate or counterrotate

Inside ergoregion

0 , 0− +Ω > Ω >

Ω can have any sign

0Ω > Only corotates with black hole
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Nonequatorial motion, motion in r and θ directions

2 2 2
00 02 0g g gφ φφα β+ + + Ω +Ω =

( ) ( )ru h hµ µ µ µ
θη α β+ +∼

�2
000

g g gg

g g
φ φφ

φ φ
±

−
Ω =− ±

� 2 2
0000g g α β= + + 0−Ω >

corotates
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Kerr metric

2
2 2 2 2 2 2 2

2 2

2 2
2 2 2

2

(1 ) ( sin )sin

2
sin

g g

g

r r r ra
ds dt r a d

r rdr
d a d dt

θ θ
ρ ρ

ρ
ρ θ θ φ

ρ

= − − + + + +

+ −
∆

2gr M= 2 2 2
gr rr a∆ = − + 2 2 2 2cosr aρ θ= +

At large distances
00

2
1

M
g

r
− ≈ −

2 2
0

2
sin singr a J

g
r rφ θ θ− ≈ ≈ J M a=
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0a =
2

2 2 2 2 2 2 2(1 ) sin
1

g

g

r dr
ds dt r d r d

rr
r

θ φ θ= − − + + +
−

Schwarzschild metric 2gr r M+ = =

2 2r M M a+ = + −

2 2r M M a− = − −

a M< Nonextremal black holes

a M= Extremal black holes

r r+ −=

a M> No black hole, naked singularity
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00 2
1 gr r

g
ρ

− = − Ergosphere: 00 0g =

2
grr ρ=
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Effective potential

2
t X

m u
N

=
2

L X
m u

g N
φ

φ

ω
= +

Equatorial motion
2

c o n s t
π

θ = =

X E Lω= −

1g u uµ ν
µ ν = −

2

. . . 1r r

d r
g

d τ
  + = − 
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2

0e f f

d r
V

d τ
  + = 
 

2 2 2
2 2

3 2 2

2
( )e f f

M a L
V a L

r r r

ε
ε ε δ

− ∆
− = + − + −

,E m J m Lε= = 1δ = for time-like geodesics 

0δ = for light-like geodesics 
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If particle falls from infinity with E=m I can reach horizon provided

L Rl l l≤ ≤

2(1 1 )Rl A= + −2(1 1 )Ll A= − + +

L
l

M
= 1

a
A

M
= ≤
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Key quantity: energy in centre of mass frame

2m P P µ
µ=

(1) ( 2 )P p pµ µ µ= +Total momentum

1 particle 

2
cmE P P µ

µ=

2 particles colliding in some point

Individual E finite, energy in CM frame unbound

High energy processes near BHs

. .( , 0, 0, 0 )a c mP E= 1u uµ
µ = −
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Two different kinds of energy

Killing energy E p µ
µξ= − µξ Killing vector

E conserved, integral of motion since metric is static or stationary

Energy in the CM frame . .c mE

not conserved. Moreover, it is defined in one point only.
point of collision
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Collision of two particles: general formulas

Ec.m.
2 =−PμPμ   #   Pμ = p1

μ
+p2

μ

Ec.m.
2 =m1

2+m2
2+2m1Erel.2,1 =m1

2+m2
2+2m2Erel.1,2,   #   

Erel.1,2 =m1γ Erel.2,1 =m2γ γ=−u1
μu2μ,   #   

Local three-velocity

2

1
(1, ) , .

1

idx
u v

ds v

µ
µ γ γ= = =

−
In special relativity

vi = ui 1−v2 vi = dxi

dτobs.
,   #   2 2 2(1 ).obsd d vτ τ= −
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Curved space-time

tetrad basis ha
μ

(0)U hµ µ=Let hi
μ

and be orthogonal to it

vi =
hμ
idxμ

−Uμdxμ
,   #   

Natural definition

vi = dxi

dτobs.
,   #   

Special relativity

vi =
uμhμ

i

−uμh0μ
.   #   
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Massless case

No comoving frame, v=c=1, m=0 E ν= ℏ

Photon with wave four-vector kμ

ν0 =−kμξμ is conserved along the trajectory

ν0−kiVi = ν
U0

,   #   ν=−kμUμ
Uμvelocity of observer

for static observer Vi = 0 U0 = 1
−g00

ν0 = ν −g00 .   #   

For ZAMO observer Vφ =ω kφ =L

U0 = 1
N

ν0−ωL= νN.   #   

ν has the meaning of frequency. 
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1975 - 1977 T. Piran, J. Katz and J. Shanam

Two particles move in opposite directions near BH

Almost infinite relative blue shift

E in CM frame almost diverges

Special scenario. Particle near black (not white) hole moving away from
horizon and colliding with another particle

Head-on collision

Types of collisions

Head-on collisions Motion towards black  hole (BSW) Intermediate case: circular
orbits
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Kinematic nature of the BSW effect. Role of critical trajectories

Geometric explanation

Role of self-force due to gravitational radiation

B

BSW effect versus Penrose process: what can be seen at infinity?

BSW effect, its physical explanation and properties

Extremal versus nonextremal BHs

BSW effect and acceleration horizons

Kinematic censorship

Kinematic explanation for collisions inside BH

Universal character of BSW effect near BH
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M. Banados, J. Silk, and S. M. West PRL 2009

Both particles experience blue shift, centre of mass frame is in free fall.
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M=1, l=L/mM
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O. Z., PRD 2010

Role of horizon

Universality of black hole physics

Unified approach to nonextremal versus extremal black holes
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conserved quantities

Integrals of geodesic equations

1g u uµ ν
µν = −

Energy in CM frame

2
. . 1 1 2 2 1 1 2 2( )( )c mE m u m u m u m uµ µ

µ µ= − + +

2 2 2
. . 1 2 1 22c mE m m m m γ= + +

1 2( )u uγ = −

ds2 = −N 2dt2 + gφdφ − ωdt2 + dr 2

A
+ gθdθ2 ,   #   

0u E= − u Lφ =

equatorial plane
2

π
θ = ( 0)z = Is a symmetry one

ds2 = −N 2dt2 + gφdφ − ωdt2 + dr 2

A
+ gθdθ2 ,   #   
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0
2 2

.
E L X

t u
N N

ω−
= = =ɺ

2
,

L X

g Nφφ

ω
φ = +ɺ

2 2
2

2

( )
1 .

E L L
l

N gφφ

ω−
= − −ɺ for timelike trajectories

X E Lω= −

Forward in time condition X>0 or X=0 If N=0 (horizon)

2
. . 1 2 1 2 1 2

2 2
1 , 

2
c mE X X ZZ

Y
m N

εε−
= + −

1ε=− for particle moving towards horizon

1ε=+ away from horizon

Z i = E i − ωL i2 − N 2b i , b i = 1 +
L i

2

gφφ
,   #   

Y =
L1L2
gφφ

.   #   
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1 2 1ε ε =− head-on collision, Piran et al

2
. .c mE always unbound near horizon

For any relationship between energies and angular momenta

2
. . 1 2 1 2

2 2
1 , 

2
c mE X X ZZ

Y
m N

+
= + −
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2
. . 1 2 1 2

2 2
1 , 

2
c mE X X ZZ

Y
m N

−
= + − X i ≡ E i − ωL i

Z i = E i − ωL i2 − N 2b i , b i = 1 +
L i

2

gφφ
,   #   Y =

L1L2
gφφ

.   #   

Two kinds of particles (trajectories)

Usual 0H HX E Lω≡ − ≠

Critical 0H HX E Lω≡ − =

1 2 1ε ε= =− BSW

In general case,
2
. .c mE remains bound in horizon limit 0N →

Special conditions for unbound
2
. .c mE
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Different limiting transitions

1)
Let, for generic  L i N → 0one approaches the horizon, so  

E c.m .
2

2m2
H

= 1 +
b1HL2H − L2

2L1H − L1
+

b2HL 1H − L1
2L2H − L2

− L1L2

gφφ H

, L iH ≡ E i
ωH

.   #   

1 1( )(1 )HL L ε= −

E c.m .
2

2m2
H

≈
b1HL2H − L2

2L1H
.   #   lim

L1→L1H

lim
N→0

E cm = ∞.   #   



45

2)

Proper time to approach horizon:

E c.m .
2

2m2
≈ E 2 − ωHL2

N
B 1

E 1
ωH

− 
E 1

2

ωH
2

B 1
2 − b1 .   #   

lim
N→0

lim
L 1→L1H

E cm = ∞.   #   

τ ∼ ∫ dlN
Z

∼ l → ∞   #   

Let us take L1 → L1H first and, then, consider the limit N → 0

1 usual particle and 1 (near) critical
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Extremal versus nonextremal

Problems with attaining extremality, a=0,998 (Thorne)

Jacobson et al, Berti at al: difficulties in realization

Grib and Pavlov: nonextremal Kerr

Extremal case: collision near horizon

1 ( )HL L δ= −2
. . 2

2( )

1 1
H

c m

L Lm
E

aδ
−

≈
− −
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Multiple scattering (Grib and Pavlov)

1a ε= −( ) ( )2 1 1 2 1 1 .L Ra L L L a− + + = ≤ ≤ = + −

1
2 ( 1 1 ) 2( 2 1)H R

a
L L a a a

a
ε

−
− = + + − − ≈ −

0ε →
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Some estimates

(Grib and Pavlov, Piattela)

To obtain in CM energy of Grand UnificationExtremal BH of solar mass,

2410 sec > time of Universe 1810 sec

To obtain 310 larger than at LHC 810 sec

Extremal black hole

Nonextremal black hole

a=0.998

Collision of two protons

BH

To obtain in CM energy of Grand Unification

810 solar mass

610 sec

13 days
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Head on collisions (Piran et l) no 
fine tuning

BSW effect – requires fine tuning

Two key ingredients of BSW effect (O..Z., 2011-2012) 

1) Horizon

2) Special class of trajectories (critical particles)

Collisions between 1 critical and 1 usual particle produce BSW effect

Two issues: getting unbound energy in CM frame,
measurements at infinity
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General properties of BSW 
effect for nonextremal black
holes

ds2 = −N2dt2 + gφφdφ − ωdt2 + dl2 + gzzdz2 .   #   

ṫ = u0 = E − ωL
N2

.   #   φ̇ = L
gφφ

+
ωE − ωL

N2
,   #   

Ec.m .
2

2m2
= h + 1 − L1L2

gφφ
  #   

h =
X1X2 − Z1Z2

N2
,   #   

Ec.m .
2

2m2
≈ X2 +

b+

ω+L+δ
fχ.   #   

f = 1
2cos2 η

2

.   #   

E1 = ω+L11 + δ

sinN η∼ On horizon f=1/2
Turning point f=1
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Circular orbits and BSW effect

Veffρ0 = 0,   #   dVeff

dρ
ρ0 = 0   #   

Nonexistence of near-horizon circular orbits for generic nonextremal
rotating black holes

− 1
2

dVeff

dρ
= −E − ωLL dω

dρ
− dN

dl
b − N2

2
db
dρ

.   #   

2

1
L

b
gφφ

= +

Horizon limit

N → 0 dN
dl

→ κ. Surface gravity, constant

− 1
2

dVeff

dρ
→ −b+κ ≠ 0   #   
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Innermost stable circular orbit (ISCO)

d2Veffρ0

dρ2
= 0.   #   23, .x H H constκ ′≈ =

x ρ ρ+= − X ∼ N ∼ κ
2
3 .   #   

O-variant of BSW effect: collisions on circular orbits

h =
X1 X2

N2
.   #   

h =
X1X2

N2
.   #   Particle 1 on circular orbit

H-variant of BSW effect: collisions of particles plunging from circular orbits

1/2
. . .c mE κ−
∼

1/ 3
. . .c mE κ −∼∼



53

Another mechanisms
Patil, Joshi, Kimura, Nakao

RN metric, naked singularity

Small f in point of collision

Q M≈

Q M<

Q M>
Black hole

Naked singularity

Small NE c.m .
2 = 4m2

1 − M2

Q2

.   #   
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Extension to rotating case O. Z.

motion in same direction

motion in opposite directions, head-on

Small N, large energy in CM frame

m1m2γ =
X 1X 2 + δZ1Z2

N 2
− L1L2

gφ
− gθp1

θp2
θ .   #   

δ = −1

δ = +1

ds2 = −N 2dt2 + gφdφ − ωdt2 + dr 2

A
+ gθdθ2 ,   #   

No horizons, no singularities (Patil, Joshi)

Both particles usual, proper time bounded
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Role of gravitational radiation

Naively: it bounds the growth of E in CM, restricts BSW effect

More careful inspection: under rather general assumptions 
(radial acceleration is finite in OZAMO frame, asimuthal force
tends to zero not too slowly) the critical trajectories do exist.
As a consequence, the BSW effect persists.

Details: I. V. Tanatarov and O. Z., PRD 2013

BSW effect survives!
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BSW effect versus Penrose process

What energy can be observed at infinity?

Rotaing extremal black holes

Conservation laws (energy and radial momentum)

et al, Harada et al (Kerr spacetime), O. Z. (dirty BH)M. Bejger

Large . .c mE but strong redshift 00 0gω ω− =In static case

Particles 1 and 2 move towards BH, collide and produce particles 3 and 4
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Upper limits for specific reactions

1 4...m m m= =Elastic collisions

3max 1.343E mλ+ = = 1.343mλ+ =

3

1 2

0.67
E

E E
η = ≤

+

If  1=3, 2=4, we have a new free parameter

Maximal extraction = 1.176
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Is it possible to achieve this inequality? 

In the Kerr case

In two other scenarios no
energy extraction

η =
E 3

E 1 + E 2
.   #   

Scenario IN+

ηm =
22 + 3 

q + 2
≈ 1. 466   #   

Extraction

Universal upper bound
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Collisions near inner horizon

Two particles collide inside black hole

2
2 2 2 2.

dr
ds dt f r d

f
ω= − + + RN

2

2
21 (1 )(1 )QM
r r

r r
f

r r
+ −= − + = − −

r_ ≤ r < r+ 0f g= − ≤ r T≡ − t y≡

2
2 2 2 2( ) .

( )

dT
ds g T dy T d

g T
ω=− + +
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Initial moment r− < r ≤ r1 < r+

Later, r decreases

r T≡ −

Collisions near r r−=
Formally, one can achieve

. .lim ( )c mE r = ∞ when r r−→

However, by itself this does NOT mean that the effect occurs 

There is also kinematic condition that
collision does occur
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1 2T T= 1 2y y=

Collision

Carter-Penrose diagram, for fixed r different points

1 1( , )U V 2 2( , )U V

Kruskal-like coordinates, analytic extension
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Collisions near inner horizon
Again, one of two particle should be critical. Then, the following cases are
possible.

Fig. 2. The weak version of BSW
effect. Near-horizon collision between
Critical particle 1 and usual one 2.

Fig. 1. Impossibility of strong
version of BSW effect. Critical
particle 1 passes through bifurcation
point whereas usual one 2 hits left
horizon

Kinematic censorship preserved
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Fig. 3. Impossibility of strong version. Critical particle 1 passes 
through bifurcation point, whereas 
a usual one 2 hits left horizon.

Fig. 4. Impossibility of strong version of
PS effect. Two usual particles hit different
branches of horizon.

Kinematic censorship
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Fig. 6. Weak version of effect. Collision
between two usual particles near left horizon.

Fig. 5. Weak version of effect.
Near-horizon collision between 

critical particle 1 and usual 
one 2
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Fig. 7. Weak version of effect. Collision between two usual
particles near bifurcation point.
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Analog in flat space-time

Minkowski and Milne metrics

ds2 = −dt 2 + dx 2 .   #   x = t̃ sinh x̃ ,   #   t = t̃ cosh x̃ ,   #   

ds2 = −dt̃ 2 + t̃ 2 dx̃ 2 .   #   t < 0, |x | < |t |.   #   t̃ 2 = t 2 − x 2 ,   #   tanh x̃ = x
t .   #   

right horizon  x = −t t̃ = 0, x̃ = −∞,   #   

left one x = +t t̃ = 0, x̃ = +∞.   #   

bifurcation point x = 0 = t t̃ = 0, |x̃ | < ∞.   #   
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X = muμξμ

X = −x 0 E, E = 1

1 − V 2
.   #   

x − Vt = x 0 .   #   t̃ = X
cosh x̃ 0 V cosh x̃ − sinh x̃

=
x 0

sinh x̃ − V cosh x̃
,   #   

critical if X=0 near-critical if X small

usual X=O(1)
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Types of collisions leading to the BSW effect.

Similar effects for cosmological horizons
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Collision between the critical particle 1 and a usual particle 2
near the horizon
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Collision between the near-critical particle 1 and a usual particle
2 on the horizon
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Alternative mechanisms of getting unbound energies in CM frame

Collisions inside ergosphere, not near horizon

Grib and Pavlov 2013 (Kerr metric)

O. Z. 2013    (generalization)

Finite Killing energy E, large negative angular momentum L
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Large

ds2 = −N 2dt2 + gφφdφ − ωdt2 +
ρ2

Δ
dr 2 + g θθdθ2 .   #   

ω > 0   #   

1 2 1 2 1 2 1 2
1 2 2

 
.

X X Z Z L L
mm

N g

ε ε
γ

−
= −

0X E Lω= − ≥L possible for L<0 since

Equatorial plane:

2
2 2 2 2( ) ,

L
Z X N m

g
= − +

We want E to be fixed

For BSW – small denominator. Now – large numerator
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From geodesic equations

2
2 2 2 2 200 2 (1 ) 0,

L g
Z E L E N m g

g θθω θ= − + − + ≥ɺ

We want to have finite E and large negative L

Outside ergosphere this is impossible since
00 0g < there

So we must look what happens inside
ergosphere (or on boundary)
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ds2 = −N 2dt2 + gφφdφ − ωdt2 +
ρ2

Δ
dr 2 + g θθdθ2 .   #   

ω > 0   #   

0 0
2 2

,
gE

m L
N g N

ω
φ = −ɺ

Inside ergosphere, 00 0g >

If 0L L= − < and L increases

d

d

φ
τ

also increases!
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Collisions inside ergosphere

E c.m .
2 ≈ 2|L2 |g00

N 2g
1 L1 + − L1 − 2 L1 − − L1 2 .   #   

Arbitrarily large00 0g >

If L so is
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E − ωL = mN
1 − V 2

,   #   

Kinematic explanation

N → 0Horizon limit V us → 1 V cr < 1

Inside ergosphere, large L<0 for particle 1 (critical)

1usV < 1crV →



77

High energy collisions due to horizon
Outside black hole
Inside black hole
Role of critical trajectories
ISCO
Force does NOT spoil BSW effect, critical trajectories survive
RN metric: example of significant effect at infinity
Relevant physical factors: BH rotation, electric charge, magnetic field
Universality typical of BH physics
Alternative mechanisms
No horizon but system in some sense “close” to its appearance
Ergoregion

A need for further studies of Penrose process in combination with
BSW effect

CONCLUSION


