А. М. Баранов

КОНФОРМНО-ГАЛИЛЕЕВА 4-МЕТРИКА
И КИНЕМЕТРИЧЕСКИЕ СИСТЕМЫ ОТСЧЕТА

Показано, что переход из системы отсчета, в которой открыты космологические модели описываются конформно-галилеевой 4-метрикой пространства-времени, в кинеметрическую систему отсчета, эквивалентен переходу в синхронную систему отсчета.

Ключевые слова: конформно-галилеева метрика, космологические модели, монадный формализм, кинеметрические системы отсчета, синхронные системы отсчета.

PACS: 04.20.-q; 04.20.Cv

Введение

В физике принято использовать различные системы координат, но, с другой стороны, именно в физике появилась понятия тела отсчета и системы отсчета, связанные с конкретными или воображаемыми физическими телами. В общей теории относительности как раз стало существенным различие между системами координат и системами отсчета. Это в первую очередь связано с ковариантностью уравнений Эйнштейна относительно произвольных преобразований координат, не имеющих особого физического смысла без привязки к конкретной системе отсчета. Поэтому при описании физических эффектов на первый план выходит описание их в различных системах отсчета, в каждой из которых может быть выбрана удобная для исследователя система координат, позволяющая провести вычисления. Существует много методов задания систем отсчета (см., например, [1]-[3]), но здесь целесообразно кратко остановиться на монадном подходе, обобщающем хронометрические инварианты Зельманова [4]-[5].

1. Хронометрические и кинеметрические системы отсчета

Тело отсчета рассматривается как система материальных точек, идеализированном изображении которых в пространстве-времени служат конфигурация вспомогательных мировых линий. Эта конфигурация определяется поле единичных вспомогательных векторов (монад) τ^μ, касательных к линиям конфигурации [1], [7] и 4-пространство-время (греческие индексы пробегают значения 0, 1, 2, 3). Физически этот вектор интерпретируется как 4-скорость соответствующего наблюдателя (прибора) системы отсчета: $\tau^\mu \equiv u^\mu = dx^\mu/ds$; $\tau^\mu \tau_\mu = 1$ (ds — пространственно-временной интервал в четырехмерном пространстве-времени). Тем самым временная компонента некоторого тензора, например, $T_{\mu\nu}$, определяется как проекция этого тензора по всем индексам на векторное поле τ^μ:

$$ T_{\mu\nu} \tau^\mu \tau^\nu. $$

Пространственные же компоненты тензора в данной системе отсчета находятся путем проектирования с помощью 3-проектора, построенного из метрического тензора и монады, $b_{\mu\nu} = \tau_\mu \tau_\nu - g_{\mu\nu}$, следующим образом: $T_{\mu\nu} b^\mu b^\nu$, при этом $b_{\mu\nu} \tau^\nu = 0$, $b_{\mu\nu} b^\lambda = - b_{\mu\lambda}$. Тензор $b_{\mu\nu}$ следует рассматривать как 3-метрику 3-площадки, ортогональной τ^μ, при локальном (1+3)-распределении. Такое распределение отвечает асимметрии пространства и времени.

Пользуясь этими замечаниями, нетрудно трансформировать общую запись 4-интервала как

$$ ds^2 = g_{\mu\nu} dx^\mu dx^\nu = (\tau_\mu \tau_\nu - b_{\mu\nu}) dx^\mu dx^\nu = dr^2 - dl^2, $$

где $dl^2 = b_{\mu\nu} dx^\mu dx^\nu$ — временная составляющая смещения dx^μ (физическое время); $dl^2 = b_{\mu\nu} dx^\mu dx^\nu$ квадрат элемента длины 3-площадки.

Эффективность монадного метода проявляется в специальных системах координат (см., например, [1]).

1 E-mail: alex_m_bar@mail.ru; Baranov@flf.ru
2 Термины монада и монадный формализм предложены А.Л. Зельмановым [6].
\[\tilde{x}^0 = \tilde{x}^0 (x^0, x^1, x^2, x^3), \quad \tilde{x}^i = \tilde{x}^i (x^1, x^2, x^3), \] (1.2)

где переменные \((x^0, x^i)\) с тильдой и без нее принадлежат разным системам координат (латинские индексы пробегают значения 1, 2, 3).

Рис. 1. Контуризации мировых линий системы отсчета \(t\) и линий времени \(x^0\) в общем случае не совпадают.

В общем случае контуризации мировых линий системы отсчета \(t\) и линий координатного времени \(x^0\) \((x^i = \text{const})\) не совпадают (рис. 1). Однако, если смешанные компоненты \(g_{0\nu}\) ковариантного метрического тензора равны нулю, то контуризация координатных линий \(x^0\) совпадает с контуризацией времеполюсных мировых линий систем отсчета \(t\). Такие системы координат называют физическими, сопутствующими системе отсчета или хронометрическими \(([1], [7])\). В этом случае обе контуризации (координатных и мировых линий) совмещены определенным образом и можно говорить о хронометрической системе отсчета. В хронометрических системах координат монада калибруется следующим образом (в сопутствующей системе отсчета):

\[\tau^\mu = \frac{g^0_0}{\sqrt{g_{00}}}. \] (1.3)

Однако существует еще класс систем отсчета, называемый нормальными системами отсчета, то есть системами без вращения. В этом случае возможно введение одноразмерной совокупности 3-мерных пространственно-полуденных гиперповерхностей \(f(\alpha)(x^0) = 0\), так что монада \(\tau^\mu\) может быть взята пропорциональной нормали к этим гиперповерхностям \(\varphi (x)\tau_\mu = \partial f(\alpha)(x^0) / \partial x^\mu\) ([1]). Таким образом вводится глобальное \((1+3)\)-расширение пространства-времени.

С контуризацией нормальной можно связать такую систему координат, что уравнение гиперповерхностей \(x^0 = \text{const}\) будет определять семейство гиперповерхностей, нумеруемых времеполюсной координатой. Такая система координат называется кинеметрической\(^3\) и в ней монада калибруется как (см. например, [1])

\[\tau_\mu = \frac{g^0_0}{\sqrt{g_{00}}}. \] (1.4)

При таком совмещении координатных линий и нормальной контуризации говорят о кинеметрической системе отсчета.

Кинеметрическая система координат определена неоднозначно, поэтому существует система кинеметрических преобразований таких координат в рамках одной системы отсчета:

\[\tilde{x}^0 = \tilde{x}^0 (x^0), \quad \tilde{x}^i = \tilde{x}^i (x^0, x^1, x^2, x^3). \] (1.5)

2. Конформно-гауссова метрика, открытые космологические модели и кинеметрические системы отсчета

\(^3\)Метод кинеметрических инвариантов (множдисный подход к кинеметрических системах координат) и его название предложены А.Л. Зельмановым в [8].
\[dx^2 = \exp(2\sigma) \delta_{\mu\nu}x^\mu x^\nu = \exp(2\sigma)(dx^{02} - dx^{12} - dx^{22} - dx^{32}), \]
(2.1)

где \(\delta_{\mu\nu} = \text{diag}(1, 1, -1, -1) \) — метрический тензор пространства Минковского; функции \(\sigma = \sigma(S) \); \(S^2 = x^{02} - r^2; \) \(x^2 = \delta_{ij}x^i x^j = (x^1)^2 + (x^2)^2 + (x^3)^2; \) \(x^0 = ct \) — переменные координат, а \(x^3 \) — пространственно-подобные переменные; при \(S \to \infty \) \(\exp(2\sigma) \to 1. \)

Скорость света в данной выборке равна единице.

В упомянутых выше источниках [2], [9], [10] ковариантные компоненты 4-скорости \(u_\mu \) выбраны в виде

\[u_\mu = (\exp(\sigma)) S_{\mu\nu} = (\exp(\sigma)) b_\mu, \]
(2.2)

что как раз и является примером введения нормальной системы отсчета.

Векторы \(b_\mu = S_{\mu\nu} \) суть нормали к поверхности \(S(\alpha) = (\delta_{\alpha\beta} x^\alpha x^\beta)^{1/2} = \text{const,} \) которые представляют собой поверхности «сфер» в пространстве-времени (гиперболоиды вращения). Исследуем теперь условия, при которых эта система отсчета превратится в кинематическую систему отсчета.

Ясно, что необходимо развернуть в пространстве-времени координатные рёбер, так чтобы координатная сетка удовлетворяла условиям кинематичности, а монада \(\tau_\mu \equiv u_\mu \) была бы пронормирована \(\delta_{\mu\nu} \) путём проектирования всех тензорных величин с помощью тетрады:

\[g(\alpha) = \mu^a \exp(-\sigma). \]
(2.3)

Тогда в касательном 4-пространстве-времени имеем запись тетрадных компонент монады в виде

\[\tau^{(\alpha)} = g^{(\alpha)\mu} \tau_\mu = \delta^{\alpha\beta} b_\beta = x^\alpha/S. \]
(2.4)

Теперь мы можем применить к \(\tau^{(\alpha)} \) обычные операции поворота как чисто пространственные, так и пространственно-временные.

Применим сначала к монаде (2.4) операцию поворота на 3-мерной гиперповерхности в 2-мерном сечении переменных \(x^2 \) и \(x^3 \) на угол \(\varphi : \)

\[\tau^{(\gamma)} = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \cos \varphi & \sin \varphi \\ 0 & 0 & \sin \varphi & \cos \varphi \end{array} \right) \]

(2.5)

где теперь идем для компоненты \(\tau^{(3)} \) равенства \(\tau^{(3)} = 0. \)

Это приводит к следующему соотношению для угла поворота \(\varphi : \)

\[\tan \varphi = x^3/x^2, \]
(2.6)

а для компоненты \(\tau^{(2)} \) к выражению

\[\tau^{(2)} = \left((x^2)^2 + (x^3)^2 \right)^{1/2}/S \equiv \hat{x}^2/S, \]
(2.7)

где \(\hat{x}^2 \) — новая переменная, полученная с учетом соотношений \(1/cos^2 \varphi = 1 + tg^2 \varphi \) и (2.6).

Далее на той же гиперповерхности в 2-мерной плоскости переменных \(x^1 \) и \(\hat{x}^2 \) произведем поворот монады \(\tau^{(\gamma)} \) на угол \(\theta : \)

\[\tau^{(\beta)} = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & -\sin \theta & \cos \theta \\ 0 & 0 & 0 \end{array} \right) \]

(2.8)

Наложим условие \(\tau^{(2)} = 0, \) приводящее к следующему соотношению для угла поворота \(\theta : \)
\[tg \theta = \bar{x}^2 / x^1, \]
при этом компоненты нового вектора \(\hat{\tau}^{(3)} \) суть

\[\hat{\tau}^{(2)} / \hat{\tau}^{(3)} = \hat{\tau}^{(1)} = r / S, \]

gде расстояние \(r \) есть инвариант относительно пространственных поворотов.

Осталось развернуть вектор \(\hat{\tau}^{(a)} \) в 2-мерной пространственно-временной плоскости переменных \(x^0 = t \) и \(\hat{x}^1 = r \) (гиперболический поворот). Для этого занопоним

\[\hat{\tau}^{(a)} = \left(L_{3(\alpha)}(\beta)\right) \hat{\tau}^{(\beta)} \left(\begin{array}{ccc} \cosh \psi & \sinh \psi & 0 & 0 \\ \sinh \psi & \cosh \psi & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right) \left(\begin{array}{c} x^0 / S \\ \hat{x}^1 / S \\ 0 \\ 0 \end{array} \right) = \left(\begin{array}{c} \hat{\tau}^{(0)} \\ \hat{\tau}^{(1)} \\ 0 \\ 0 \end{array} \right). \]

Приравнивая \(\hat{\tau}^{(1)} = 0 \) нулю, находим соответствующий угол поворота, определяемый выражением

\[\text{th} \psi = -r / t, \]

при этом \(\hat{\tau}^{(0)} = 1 \) с учетом (2.12) и соотношения \(1 / \cosh^2 \psi = 1 - \text{th}^2 \psi \).

Результирующий поворот исходной монады \(\tau^{(a)} \) в итоге может быть записан в виде

\[\hat{\tau} = L^{(3)}(\gamma)x^{(\beta)}L^{(2)}(\alpha)\hat{\tau}^{(\beta)} = \delta^a_\gamma, \]

gде \(L^{(\mu)}(\nu) \) матрицы поворотов, описанные выше и рассставленные в порядке выполнения операций.

Возвращаясь к тензорным обозначениям, приходим к требуемому результату, совпадающему с (1.4),

\[\hat{\tau}^{(a)} = g_{(\gamma)\mu}\hat{\tau}^{(\gamma)} = g_{(\gamma)}^\nu g_{\nu\mu} \delta^0_\delta \exp (\sigma) = g_{\mu\nu} \exp (\sigma) = \hat{\tau}^{(0)} / \sqrt{g^{00}}, \]

то есть получаем кинематическую калибровку монады.

Физическое время, являясь скаляром, может быть представлено в следующей записи при учете инвариантности сверток относительно проведенных поворотов в пространстве-времени:

\[dt = \tau_\mu dx^\mu = \exp (\sigma) dS = \tau^{(a)} dx^{(a)} = \hat{\tau}^{(a)} \hat{\tau}^{(a)} = \delta_\mu \delta_\nu \exp (\sigma) = \hat{\tau}^{(0)} / \sqrt{g^{00}}, \]

Таким образом, как и следовало ожидать, \(x^0 = S \) становится временноподобной координатой, а \(x^0 = const \) задает семейство гиперповерхностей с нормалими, коллинеарными монаде \(\tau_\mu \). При этом собственное (физическое) время носится именем временноподобной переменной \(S \).

Так как взятый метрический тензор пространство-времени (2.1) в силу его диагональности не меняется при проведении операций поворота, то 3-метрика (3-проектор) записывается как

\[b_{\mu\nu} = \hat{\tau}^{(a)} \hat{\tau}^{(a)} = \delta^{(0)}_{\mu} \delta^{(0)}_{\nu} = \delta_{\mu\nu} \exp (2\sigma) \]

или явно

\[b_{\mu\nu} = \text{diag} \left(0, b_{ij} \right), \]

где \(b_{ij} = -\delta_{ij} \exp (2\sigma) = \delta_{ij} \exp (2\sigma). \)

В силу инвариантности скаляров \(ds^2 \) и \(dt \) для физической 3-метрики \(dl^2 \) из (1.1) в случае локального \((1+3)\)-расщелпления запишем следующие равенства:
отчета.

Тогда 4-интервал (1.1) перепишем в виде, совпадающем с определением элемента 4-интервала для синхронной системы отсчета (см., например, [1], формула (97.2))

\[ds^2 = (dt)^2 - (dl)^2 = (dr)^2 - b_{ij} \frac{d \chi^i}{d \chi^j} = \exp(2\sigma) \frac{d \chi^i}{d \chi^j}. \]

(2.18)

С другой стороны, для открытой космологической модели квадрат элемента пространственного расстояния \(dl^2 \) в трехмерном изотропном пространстве с отрицательной кривизной, как известно, может быть записан в координатах \(r, \theta, \varphi \) в виде

\[dl^2 = \delta_{ij} \frac{d \chi^i}{d \chi^j} = \frac{dr^2}{1 + r^2/a_0^2} - r^2(d\theta^2 + \sin^2 \theta d\varphi^2), \]

(2.20)

где \(a_0 = const \) и фиксированный радиус четырехмерной пространственно-временной гиперсферы.

Далее, выбрав \(a_0 \equiv S = const \), \(r = S \sinh R \) и подставляя в (2.19), получим

\[ds^2 = \exp(2\sigma) \left((dl^2)^2 - S^2 \left(dR^2 + \sinh^2 \theta d\varphi^2 \right) \right) \]

(2.21)

или вводя собственное (фигуральное) время согласно соотношению (2.15) из (2.21) получим запись конформно-гауссовой 4-метрики в синхронной системе отсчета (см., например, [1], формула (113.2))

\[ds^2 = dr^2 - a^2(t) dl^2, \]

(2.22)

где \(a(t) = S \exp(\sigma(t)) = S (dr/ds) \) радиус открытой космологической модели, \(dl^2 = dR^2 + \sinh^2 \theta d\varphi^2 \) элемент квадрата длины гиперболического 3-пространства со скалярной кривизной \(R_0^3 = -1 \) (геометрическое 3-пространство).

Если же исходный метрический интервал (2.1) записать как

\[ds^2 = \exp(2\sigma) \delta_{ij} dx^i dx^j = \exp(2\sigma)(dt^2 - dr^2 - d\theta^2 + \sin^2 \theta d\varphi^2) \]

(2.23)

и затем использовать преобразование

\[t = S \cosh R; \quad r = S \sinh R, \]

(2.24)

tо выражение (2.23) сразу трансформируется в 4-интервал вида (2.21)

\[ds^2 = \exp(2\sigma) \delta_{ij} dx^i dx^j = \exp(2\sigma)(dt^2 - dr^2 - d\theta^2 + \sin^2 \theta d\varphi^2) \]

(2.23)

и затем использовать преобразование

\[t = S \cosh R; \quad r = S \sinh R, \]

(2.24)

tо выражение (2.23) сразу трансформируется в 4-интервал вида (2.21)

\[ds^2 = \exp(2\sigma) \delta_{ij} dx^i dx^j = \exp(2\sigma)(dt^2 - dr^2 - d\theta^2 + \sin^2 \theta d\varphi^2) \]

(2.23)

и затем использовать преобразование

\[t = S \cosh R; \quad r = S \sinh R, \]

(2.24)

tо выражение (2.23) сразу трансформируется в 4-интервал вида (2.21)

3. Заключение

В космологии для описания различных космологических моделей зачастую используют синхронную систему отсчета. Однако существует подход Фока, связанный с введением космогно-гауссовой метрики, которая может быть использована для описания открытых космологических моделей, таких как открытая вселенная Фридмана. Эта метрика имеет ряд преимуществ по сравнению с выбором метрики в синхронных координатах, в которых решение записывается в параметрическом виде.

Конформно-гауссовые метрики связаны с нормальными системами отсчета, то есть системами без вращения. В таких системах отсчета можно ввести 4-скорость (монаду Зельманова) пропорциональную нормаль к 3-гиперповерхности.

С конформно-гауссовых можно связать систему координат такую, чтобы семейство 3-гиперповерхностей (ортогональных монад) нумерировалось временными образами координатой. Такая система координат называется конформной кинематикой. Если еще совместить координатные линии времени и нормальной конфигурация, то получим кинематическую систему отсчета.
Чтобы совместить направление выбранной монады с линией времени, необходимо в касательном 4-пространстве-времени произвести соответствующие повороты монады. После такой процедуры система отсчета оказывается кинематической. Введение собственного (физического) времени вдоль временного направления приводит к записи метрики в синхронной системе отсчета. При этом конформно-галилеева метрика в этой системе отсчета принимает явный вид для открытой изотропной космологической модели.

Следует отметить, переход в кинематическую систему отсчета и введение собственного времени эквивалентно переходу в синхронную систему отсчета.

СПИСОК ЛИТЕРАТУРЫ

Поступила в редакцию 01.02.2012

А. М. Баранов

Conformally Galilean 4-metric and Kinematic Reference Frames

Keywords: conformally Galilean metric, cosmological models, monad formalism, kinematic reference frames, synchronous reference frames.

PACS: 04.20.-q; 04.20.Cv

In cosmology the synchronous reference frames are used for description of the different cosmological models. But there is the Fock approach which is connected with the conformally Galilean metric. This metric can describe the open cosmological models such as the open Universe of Friedman. Such metric has a number of advantages compared to the metric in the synchronous coordinates. For example, solutions in these coordinates are written down in a parametric form.
The conformally Galilean metrics are connected to the normal reference frames, i.e. with reference frames without a rotation. In such frames of reference it is possible to introduce 4-velocity (the Zelmanov monad) which is proportionate to a normal vector to 3-hypersurface.

It is possible to relate a system of coordinates with a direction of a normal vector (of the monad) which is orthogonal to 3-hypersurface. Then the set of 3-hypersurfaces can be numbered by the timelike coordinate. Such system of coordinates is termed a kinematic system of coordinates. If to combine the coordinate line of time with the direction of normal vector (of the monad) to 3-hypersurface, we will get the kinematic frame of reference.

To unite a direction of the chosen monad with a line of time, it is necessary to effect corresponding rotational displacements of the monad in the tangent 4-space-time. After such procedure the reference frame will be the kinematic frame of reference. Introduction of the proper (physical) time lengthways of a timelike direction leads to a metric in the synchronous frame of reference. Thus in this frame of reference the conformally Galilean metric can be written down in an explicit form for the open isotropic cosmological model.

Hence, a transition into the kinematic frame of reference and an introduction of the proper time it is equivalent to transition into the synchronous frame of reference.

REFERENCES

Received 01.02.2012

Baranov Alexandre Mikhailovich, Doctor of Physics and Mathematics, Professor,
Krasnoyarsk State Pedagogical University, 89 Ada Lebedeva St., Krasnoyarsk, 660049, Russia
E-mail: alex__m_bar@mail.ru; Baranov@stfi.ru
©Baranov A.M.