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Abstract: It is considered the problem of a superposition of the Weyl matrices with different canonical bases as

sum these matrices with a point of view of Petrov’s algebraic classification of gravitational fields. Weyl matrices

are close connected with the algebraic classification. Such superposition of the Weyl matrices has physical

interpretation in superposition of weak gravitational fields and may be used for getting resulting gravitational

field. An example of an investigation there is sum of two Weyl matrices for two gravitational plane waves of type

𝑁 by Petrov classification. In linear approximation we get a new resulting solution of the Einstien equations with

traceless energy-momentum tensor which is nilpotent matrix of index three. The energy-momentum tensor of

the electromagnetic high frequency radiation is the nilpotent matrix of index two. The optical expansion scalars;

the optical scalars describing rotation and shear of new congruences in resulting gravitational field vanish. Thus

the congruence with tangent eigenvector of energy-momentum tensor in the first approximation behaves as a

laminary flow of perfect fluid similarly as free electromagnetic radiation.
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Introduction

The algebraic classification of spaces proposed by Petrov [1] permits to study gravitational fields

without taking into account how specifically there fields were "derived"from some given gravitational

fields. On the other hand, algebraic Petrov classification is related closely to phase transitions between

types of gravitational fields [2–4]. Also a composition of Petrov’s algebraic types on the Weyl matrices

level can be constructed (see [5], [6]).

We consider here the connection of resulting weak gravitational field with initial weak fields

(neglecting their mutual interactions), the canonical frames of 3 × 3 complex traceless symmetrical

Weyl matrices being linked by infinitesimal rotations. Different canonical frames of such Weyl matrices

make up the Petrov algebraic classification of space-times (algebraic classification of gravitational fields).

Obviously the superposition of these fields satisfies linearised Einstein equations.

1. Principle of superposition and Weyl matrices

Each gravitational field type corresponds to the concrete type of Weyl matrices for the Petrov

algebraic classification. Thus into account of this remark the principle of superposition for two weak

gravitational fields can be expressed by a sum of Weyl matrices, which must be written in the same

orthonormal basis with help of matrices of rotation 𝑇 in complex 3D space,

𝑊3 =𝑊 𝑐
1 + 𝑇2𝑊

𝑐
2 𝑇2, (1.1)
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where 𝑊 𝑐 is the Weyl matrix in canonical form, and 𝑇 is an orthonormal complex matrix, 𝑇−1 = 𝑇 is

a transposed matrix.

It is known orthonormal complex matrix always is represented as (see [7])

𝑇 = 𝑅𝑒𝑥𝑝 (𝑖𝐾),

where 𝑖 is an imaginary unit, 𝑖2 = −1, 𝑅 is an orthonormal real matrix and 𝐾 is an antisymmetric real

matrix, 𝐾̃ = −𝐾.
Matrix 𝑇 is connected with the Lorents transformation in 4D tangent space in the form of (see [8])

𝑇𝑖𝑘 = 2Ω𝛼𝛽
𝑘 𝐿𝑖𝛼𝐿0𝛽 ; 𝛼, 𝛽 = 0, 1, 2, 3;

Ω𝛼𝛽
𝑘 = 𝛿𝛼[𝑘𝛿

𝛽
0] −

𝑖

2
𝜀𝑘𝑚𝑛𝛿

𝛼
𝑚𝛿

𝛽
𝑛; 𝑘,𝑚, 𝑛 = 1, 2, 3. (1.2)

where 𝛿𝛽𝛼 is Kronecker symbol; 𝜀𝑘𝑚𝑛 is 3D Levi-Civita symbol, square brackets denote

antisymmetrisation (symmetrisation will be expressed as (𝑎 𝑏)).

Weyl matrix can be now written in the form

𝑊𝑖 𝑘 =
(+)

𝑊 𝑘 0 𝑗 0=
1

2
Ω𝛼𝛽

𝑘 Ω𝛾 𝛿
𝑗 𝑊𝛼𝛽𝛾𝛿, (1.3)

where
(+)

𝑊 𝛼𝛽𝛾𝛿=𝑊𝛼𝛽𝛾𝛿 − 𝑖𝑊 *
𝛼𝛽𝛾𝛿

is the self dual Weyl tensor with
(+)

𝑊
*
𝛼𝛽𝛾𝛿 = 𝑖

(+)

𝑊 𝛼𝛽𝛾𝛿,

and

𝑊 *
𝛼𝛽𝛾𝛿 =

1

2
𝜀𝛼𝛽𝜇𝜈 𝑊𝜇𝜈𝛾𝛿

is the dual Weyl tensor; the duality operation marks as *, 𝜀𝛼𝛽𝜇𝜈 is 4D Levi-Civita symbol.

The Weyl conformal curvature tensor can be written as

𝑊𝛼𝛽𝛾𝛿 = 𝑅𝛼𝛽𝛾𝛿 +𝑅𝛾[𝛼𝑔𝛽]𝛿 −𝑅𝛿[𝛼𝑔𝛽]𝛾 +
1

3
𝑅𝑔𝛾[𝛼𝑔𝛽]𝛿. (1.4)

where 𝑅𝛼𝛽𝛾𝛿 is the Riemann tensor of cuvature; 𝑅𝛼𝛽 is the Ricci tensor; 𝑅 is the scalar curvature, and

𝑔𝛼𝛽 is a metrical tensor connected closely with a space-time metric which is a quadric form

𝑑𝑠2 = 𝑔𝛼𝛽𝑑𝑥
𝛼𝑑𝑥𝛽 . (1.5)

The Weyl tensor (1.4) is a base of a construction of 3 × 3 complex traceless symmetrical Weyl

matrices with a help of mapping (6).

The set of orthonormal matrices 𝑇 as functions of complex parameters (𝜙𝑗) = (𝜙1, 𝜙2, 𝜙3) form a

continuous group, the infinitesimal transformations of which being skew symmetrical matrices

𝐴𝑘 =

(︂
𝜕𝑇

𝜕𝜙𝑘

)︂
|𝜙𝑖=0

; 𝐴𝑘 = −𝐴𝑘. (1.6)

Let the matrix 𝑊 be connected with certain matrix 𝑊0 by similarity transformation,

𝑊 = 𝑇𝑊0𝑇 , (1.7)

where 𝑇 = 𝑇 (𝜙1, 𝜙2, 𝜙3), and 𝑊0 is independent of parameters 𝜙𝑗 .

Differentiation of expression (13) with respect to 𝜙𝑘 at the point 𝜙𝑖 = 0 with making use of (12)

gives

(𝑊,𝑘)0 ≡
(︂
𝜕𝑊

𝜕𝜙𝑘

)︂
0

= [𝐴𝑘,𝑊0], (1.8)
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where [𝐴,𝐵] = 𝐴𝐵 −𝐵𝐴 is a commutator of matrices.

It is easy to find now

𝑊,𝑗,𝑘 = [𝐴𝑘, [𝐴𝑗 ,𝑊0]] + [𝐵𝑘𝑗 ,𝑊0]. (1.9)

Here

𝐵𝑘𝑗 =

(︂
𝜕2𝑇

𝜕𝜙𝑗𝜕𝜙𝑘

)︂
0

−𝐴𝑘𝐴𝑗 .

Higher order derivatives can be found by a similar procedure.

It can be shown that the rank of the matrix being a function of parameter, may be changed by

differentiation. Therefore ranks of the matrices (1.8), (1.9) will perhaps not be equal to rank of the initial

matrix (13). If each Weyl matrix 𝑊 is supposed to correspond to a gravitational field of certain metric,

then the change of the rank of 𝑊 (leading to the corresponding change of the Petrov algebraic type)

means a transition to a new gravitaional field of another metric. Hence one can consider the expression

(1.8), for instance, as a way of "derivation" of a new gravitational field from a primary one. In this case

the gravitational field was not supposed to be weak.

We consider now the group of rotation in 3D the Euclidean complex space. Corresponding matrices

are

𝑇 = 𝑒𝑥𝑝(𝜙𝑗𝑋𝑗). (1.10)

These matrices are the set of orthonormal matrices as functions of complex parameters

(𝜙𝑗)=(𝜙1, 𝜙2, 𝜙3) in 3D complex space (summation over repeated indices from 1 to 3 is supposed).

Furthermore matrices 𝑇 form a continuous group of matrices, where the matrices

𝑋1 =

⎛⎜⎝ 0 0 0

0 0 1

0 −1 0

⎞⎟⎠ ; 𝑋2 =

⎛⎜⎝ 0 0 1

0 0 0

−1 0 0

⎞⎟⎠ ; 𝑋3 =

⎛⎜⎝ 0 1 0

−1 0 0

0 0 0

⎞⎟⎠ (1.11)

are generators of infinitesimal rotations around corresponding axes and skew symmetrical matrices

𝑋𝑘 =

(︂
𝜕𝑇

𝜕𝜙𝑘

)︂
|𝜙𝑗=0

; 𝑋̃𝑘 = −𝑋𝑘. (1.12)

Further taking 𝜙𝑗 as small parameters we express 𝑊3 as a series

𝑊3 =𝑊 𝑐
1 +𝑊 𝑐

2 + [𝐴𝑖,𝑊
𝑐
2 ]𝜙𝑖 +

1

2
[𝐴𝑖 [𝐴𝑘,𝑊

𝑐
2 ] ]𝜙𝑖𝜙𝑘 + ... (1.13)

with the use of formulas (1.8), (1.9), (1.10); 𝐵𝑖𝑘 = 0 and 𝑇2 = 𝑇2(𝜙𝑖) from (3).

This decomposition represents the resulting gravitational field as a sum of fields of given Petrov

algebraic types with extra terms due to the choice of non-canonical basis of one of the two summands. The

question can now be posed, the gravitational fields of which types are to be added to the sum 𝑊 𝑐
1 +𝑊 𝑐

2

in order to get, up to the desired degree of approximation, the gravitational field correspponding to 𝑊3.

On the other hand, a given field can be considered as a superposition of two initial fields plus small

corrections.

Now we express (3) as

𝑊 𝑐
3 = 𝑇3𝑊

𝑐
1𝑇3 + 𝑇3𝑇2𝑊

𝑐
2𝑇2𝑇3, (1.14)

and for the series in small parameters’ powers we have

𝑊 𝑐
3 =𝑊 𝑐

1 +𝑊
𝑐
2 −[𝐵𝑖, (𝑊

𝑐
1 +𝑊

𝑐
2 )] 𝜂𝑖+[𝐴𝑖,𝑊2𝑐]𝜙𝑖−

1

2
[𝐵𝑖, [𝐵𝑘, (𝑊

𝑐
1 +𝑊

𝑐
2 )]] 𝜂𝑖𝜂𝑘+[𝐵𝑖, [𝐴𝑘,𝑊

𝑐
2 ]]𝜙𝑘𝜂𝑖+...,

(1.15)

where 𝐵𝑖 = ((𝑇3),𝑖)0 and 𝑇3 = 𝑇3(𝜂𝑖).

It is worth mentioning that if 𝑊 𝑐
1 ≡ 0, the decomposition (1.15) describes the non-canonical basis

choice, but by an additional rotation it is possible regain the canonical frame, e.g. by a transition from

one frame of reference to another.
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2. Weak gravitational fields and Weyl matrices

Taking the Weyl matrix of the algebraic type 𝑁 (a wave type) now in its canonical basis,

𝑊 𝑐
1 =𝑊 𝑐

2 =𝑊 𝑐
𝑁 =

⎛⎜⎝ 0 0 0

0 1 𝑖

0 𝑖 −1

⎞⎟⎠ ; (2.1)

one may symbolically rewrite the decomposition (1.13) when 𝜙1 = 0, 𝜙2 = 0, 𝜙3 ≡ 𝜙 as

𝑊 = 2𝑁 + 𝐼𝐼𝐼 𝜙+ 𝐼𝐼 𝜙2 + 𝐼𝑎𝜙3 + ... (2.2)

(after the commutators were found and their Petrov algebraic types were determined). In symbolic

decomposition (2.2) 𝑊 𝑐
𝑁 (see (2.1)) is marked here as 𝑁.

The matrix of algebraic type 𝐼𝐼𝐼 in canonical form (also a wave type)

𝑊 𝑐
𝐼𝐼𝐼 =

⎛⎜⎝ 0 1 0

1 0 −𝑖
0 −𝑖 0

⎞⎟⎠ (2.3)

is marked by symbol of 𝐼𝐼𝐼.

The symbol of 𝐼𝐼 corresponds to algebraic type of 𝐼𝐼 with canonical matrix

𝑊 𝑐
𝐼𝐼 =

⎛⎜⎝ −2𝑎 0 0

0 𝑎+ 1 𝑖

0 𝑖 𝑎− 1

⎞⎟⎠ , (2.4)

where 𝑎 is a parameter.

Further algebraic type 𝐼𝑎 with canonical matrix

𝑊 𝑐
𝐼𝑎 =

⎛⎜⎝ 0 0 0

0 1 0

0 0 −1

⎞⎟⎠ (2.5)

is marked as symbol of 𝐼𝑎.

If parameters in decomposition (1.13) 𝜙2 = 𝜙3 = 0, then the matrix 𝑊 belongs to type 𝑁, since

this rotation does not destroy the canonical basis.

The symbolic decomposition (2.2) is similar to one of the peeling-off theorem by Sachs (see e.g. [9]

p.131, [10] and [11]), but the parameter 𝜙 plays here the role of rotation angle connecting two canonical

frame of two matrices (both frame are taken at the same point of the manifold). From this decomposition

it is also clear that a superposition of two gravitational fields of type 𝑁 with non coinciding frame does

not give the resulting field of type 𝑁.

We consider now the possibility to find (in the linear approximation) a new gravitational field,

departing from a weak plane gravitational wave in vacuum (algebraic type 𝑁) with the metric

𝑔𝜇𝜈 = 𝜂𝜇𝜈 + ℎ𝜇𝜈 , (2.6)

where the quantities ℎ𝜇𝜈 = ℎ𝜇𝜈(𝑥
0 − 𝑥1) and their derivatives are infinitesimals of the first order;

ℎ𝜇𝜈 = 𝑑𝑖𝑎𝑔(1,−1,−1,−1); ℎ22 = −ℎ33; ℎ23 = ℎ32. The Weyl tensor in this case coincides with the

curvature tensor. It is known that this metric satisfies the Hilbert-Lorentz transversality conditions, and

null Killing vector exists, 𝜉𝜇 = 𝛿0𝜇 − 𝛿1𝜇 giving the direction of propagation of the wave in 4D space.

It is easy to find the connection of the new matrix with the initial one by determinig the Weyl

matrix for the initial matric, making use of the expression (1.8) (with 𝜙 = 𝜙3, 𝐴 = 𝑋3 = 𝑋), and

indentifying the commutator [𝑋, 𝑊 ] and the new 𝑊̂ . For the non-vanishing components we have

𝑊̂12 = 𝑊̂21 = 𝑊̂22; 𝑊̂13 = 𝑊̂31 = 𝑊̂23. (2.7)
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The matrix 𝑊̂ belongs to Petrov type 𝐼𝐼𝐼, and it can brought to the canonical form by the similarity

transformation with

𝑇 =

⎛⎜⎝ 0 −1 0

1 0 0

0 0 1

⎞⎟⎠ (2.8)

with det𝑇 = 1.

Though this procedure does not influence the variables on which components of the Weyl tensor

depends, the vacuum Einstein equations do not hold for the new metric. Straightforward calcutations

show that if the metric in linear approximation depends only on the retarded time, and the linearized

Einstein equations in vacuum are satisfied, then the space can be of type 𝑁 only. Therefore we use in

the following calculations the Weyl conformal curvature tensor (1.4) in linear approximation.

Linearized expressions for curvature tonsor, Ricci tensor and scalar curvature can be written in

terms of the derivatives of ℎ̂𝜇𝜈 as follows (ℎ̂𝜇𝜈 depends on retarded time 𝑢 = 𝑥0 − 𝑥1):

𝑅̂𝛽𝛾 = ℎ̂𝛼(𝛾,𝛽),𝛼 − 1

2
ℎ̂ ,𝛾,𝛽 ; (2.9)

𝑅̂ = ℎ̂𝛼𝛽,𝛼𝛽 ; (2.10)

ℎ̂ = ℎ̂𝛼𝛼 ; ℎ̂𝜇𝜈 describes a new gravitational field. Components of the matrix 𝑊̂ are expressed through

components of the Weyl tensor as

𝑊̂12 = 𝑊̂1020 + 𝑖 𝑊̂2023 ; 𝑊̂13 = 𝑊̂1030 + 𝑖 𝑊̂3023 . (2.11)

In the linear approximation

𝑊̂1020 = 𝑅̂1020 +
1

2
𝑅̂12 =

1

4
(
¨̂
ℎ 02 +

¨̂
ℎ 12) ; (2.12)

𝑊̂2023 = 𝑅̂2023 −
1

2
𝑅̂30 = −1

4
(
¨̂
ℎ 30 +

¨̂
ℎ 31) ; (2.13)

𝑊̂1030 = 𝑅̂1030 −
1

2
𝑅̂13 =

1

4
(
¨̂
ℎ 03 +

¨̂
ℎ 13) ; (2.14)

𝑊̂3023 = 𝑅̂3023 −
1

2
𝑅̂02 =

1

4
(
¨̂
ℎ 02 +

¨̂
ℎ 12), (2.15)

where a dot means retarded time derivative.

By virtue of (1.10) and (1.13) the new and old functions ℎ𝜇𝜈 obey the relations

2ℎ22 = ℎ̂02 + ℎ̂12 ; 2ℎ23 = ℎ̂03 + ℎ̂13 ; (2.16)

(here integration constants are put equal to zero and only the components ℎ̂02, ℎ̂12, ℎ̂03, ℎ̂13, are suppoted

to be non zero).

The relations (2.16) clearly do not fix unambiguously the functions ℎ̂𝜇𝜈 , so that several variants of

their choice exist, for instance

ℎ̂02 = ℎ̂12 = ℎ̂22 ; ℎ̂03 = ℎ̂13 = ℎ̂23 ; (2.17)

ℎ̂02 = ℎ̂03 = 0 ; ℎ̂12 = 2ℎ̂22 ; ℎ̂13 = 2ℎ̂23 ; (2.18)

and so on.

The metric 𝑔𝜇𝜈 satisfies Einstein equations with a traceless energy-momentum tensor [12]

𝑇𝜇𝜈 = 𝑚𝜇 𝑙𝜈 + 𝑙𝜇𝑚𝜈 (2.19)
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with

𝑚𝜇 = 𝑏 𝛿2𝜇+𝑎 𝛿
3
𝜇 ; 𝑙𝜇 = 𝛿0𝜇−𝛿1𝜇 ; 𝑚𝜇𝑚

𝜇 < 0 ; 𝑙𝜇𝑙
𝜇 = 0 ; 𝑚𝜇𝑙

𝜇 = 0 ; 𝑏 = − 1

8𝜋
¨̂
ℎ 22 ; 𝑎 = − 1

8𝜋
¨̂
ℎ 23

and 𝑇𝜇
𝜇 = 0, 𝑇𝜇

𝜈,𝜇 = 0 (in this approximation).

This energy-momentum tensor may be written in matrix block form as

(𝑇𝜇𝜈) =

(︃
0 𝐶

𝐶 0

)︃
, (2.20)

where matrix 𝐶 is

𝐶 =

(︃
𝑏 𝑎

−𝑏 −𝑎

)︃
(2.21)

with det𝐶 = 0.

We investigate now the tensor 𝑇𝜇𝜈 independently of its origin. Consider the eigenvalue problem

𝑇𝜇
𝜈𝑌

𝜈 = 𝜆𝑌 𝜇, (2.22)

where 𝑌 𝜈 are the eigenvectors, and 𝜆(𝜈) are eigenvalues.

All eigenvalues 𝜆(𝜈) are equal to zero, and eigenvectors (in this case there is no timelike one) are

𝑌 𝜇 = 𝑙𝜇 + 𝑛𝜇 , (2.23)

here 𝑛𝜇𝑛𝜇 < 0; 𝑛𝜇 = 𝑎 𝛿𝜇2 − 𝑏 𝛿𝜇3 ; 𝑛
𝜇𝑙𝜇 = 𝑛𝜇𝑚𝜇 = 0.

Hence 𝑇𝜇𝜈 is energy-momentum tensor of some null field (on the properties of energy-momentum

tensor of the null electromagnetic field see e.g. [9], p.65).

Furthermore energy-momentum tensor as matrix (see (2.20)) is a nilpotent matrix of index 3, i.e.

(𝑇𝜇𝜈)
3 = 0. The energy-momentum tensor of the electromagnetic high frequency radiation in the form of

𝑇𝜇𝜈 ∝ 𝑙𝜇𝑙𝜈 is the nilpotent matrix of index 2. And else, in accordance to classification of Plebański [13]

tensor 𝑇𝜇𝜈 from (2.19) belongs to degenerate third type and such energy-momentum tensor can not

describe macro distribution of matter.

It is worth mentioning that the optical expansion scalars of the congruences with tangent vectors

𝑙𝜇 and 𝑛𝜇 vanish,

𝜀 =
1

2
𝑙𝜇;𝜇 =

1

2
𝑛𝜇;𝜇 = 0, (2.24)

so that 𝑌 𝜇
;𝜇 = 0 (in the considered approximation).

The optical scalars describing rotation and shear of these congruences vanish too. Thus the

congruence with tangent vector 𝑌 𝜇 in the first approximation behaves as a laminary flow of perfect

fluid (free electromagnetic radiation behaves likewise).

Conclusion

In the paper the superposition of Weyl matrices with different canonical bases as sum these matrices

with a point of view of Petrov’s algebraic classification of gravitational fields is considered. Weyl matrices

are close connected with the algebraic classification of spaces. At first, the superposition of the Weyl

matrices has physical interpretation in superposition of weak gravitational fields and may be used for

getting resulting gravitational field. At second, such superposition of the Weyl matrices gives new Weyl

matrix of concrete algebraic type corresponding to a new gravitational field. All this it is demonstrated

at example of sum two Weyl matrices with wave type 𝑁. As result we have in linear approximation the

metric of the new gravitational field with traceless energy-momentum tensor which is nilpotent matrix

of index three. Here we must say that energy-momentum tensor of the electromagnetic high frequency

radiation is the nilpotent matrix of index two. Moreover the optical expansion scalars, the optical scalars
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describing rotation and shear of new congruences in resulting gravitational field vanish. And congruence

of with tangent eigenvector of energy-momentum tensor in the first approximation behaves as a laminary

flow of perfect fluid likewise of free electromagnetic radiation.
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