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CdopmynupoBana HOBag HeJMHEHHAs BepCcUs AKCMOHHO  MOAMMDUUMPOBAHHONH  00lIEpEesIATUBUCTCKON
MarauroruapoguHaMuku. CaMoCorIacoBaHHbIN (OpPMAIIN3M 3TON TEOPUHM OCHOBAH HA BBEICHUH B JIATDAHIKHUAH
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WCYEe3HOBEHUEM 3JIEKTPHYECKOTrO moJid. Hamm mpesnjiokeHbl [Be CYIIECTBEHHO HOBbIE HEJIWHEHHbIE MOIEsIN, B
pPaMKaxX KOTOPBIX QHOMAJIHHO OOJIBINAST 3JIEKTPOIPOBOJIHOCTH KOMIIEHCUDPYETCS] COOTBETCTBYIONIMM ITOBEIEHEM
KOHEYHOTO TI0 BEJIMIWHE TICEBIOCKAIAPHOTO (AKCHOHHOTO) TI0JIsT, 00€CTIEuNBAIOIET0 (PUHATHOCTD JTEKTPHIECKOTO
oI B MATHUTOTHIPOJUHAMHIECKOM TIOTOKE (9TO 3IJIEKTPHHYECKOE TIIOJIE€ TPOMOPIMOHAIBHO JHMO0 CaMOMy
MArHATHOMY TIOJTIO, JTMOO0 YTJIOBOM CKOPOCTH BPANIEHUST CPEJIBI).
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The new nonlinear axionically extended version of the general relativistic magnetohydrodynamics is formulated.
The self-consistent formalism of this theory is based on the introduction into the Lagrangian of the new unified
scalar invariant, which is quadratic in the Maxwell tensor, and contains two periodic functions of the pseudoscalar
(axion) field. The constructed unified invariant and the elaborated nonlinear theory as a whole, are invariant
with respect to two symmetries: first, the discrete symmetry associated with the properties of the axion field;
second, the Jackson’s SO(2) type symmetry intrinsic for the electromagnetism. The subsystem of the master
equations, which describes the velocity four-vector of the hydrodynamic flow, is constructed in the framework of
Eckart’s theory of viscous heat-conducting fluid. The axionically extended nonlinear Faraday, Gauss and Ampere
equations are supplemented by the ansatz about the large electric conductivity of the medium, which is usually
associated with vanishing of the electric field. We have suggested two essentially new nonlinear models, in the
framework of which the anomalous electric conductivity is being compensated by the appropriate behavior of
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the finite pseudoscalar (axion) field, providing the electric field in the magnetohydrodynamic flow to be finite
(either to be proportional to the magnetic field, or to the angular velocity of the medium rotation).
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Introduction

Relativistic magnetohydrodynamics is the important part of the modern cosmic plasma physics
and fluid dynamics in the context of applications to the theory of matter accretion to the rotating
neutron stars and black holes, to the theory of structure of magnetospheres of pulsars and Sun (see,
e.g., [1] — [11] for references and description of the main problems). The canonic formalism of relativistic
magnetohydrodynamics, described in the famous book of André Lichnerowicz [1], is constantly being
extended to solve new astrophysical and cosmological problems. For instance, in the excellent paper of
Massimo Giovannini [7] the reader can find the applications of anomalous magnetohydrodynamics to
the relativistic domains with extreme characteristics. In that paper also one can find a new element
of fluid dynamics, namely, the theory of scalar/pseudoscalar fields interacting with electromagnetic
fields. In the paper [5] the authors consider fluids with chiral properties. The interest to these problems
is not accidental, in fact, we are on the threshold of formulation and active use of the relativistic
axion magnetohydrodynamics, which deals with interaction of the cosmic axionic dark matter with
magnetohydrodynamic flows.

We consider the relativistic axion magnetohydrodynamics as an essential part of the relativistic
theory of the axionically active plasma (see, e.g., [12] — [16] for some specific results for such plasma).
We have introduced two new elements to the theory of axionically active systems. The first element is
connected with the nonlinear approach to the description of the axion-photon coupling. The standard

idea is to introduce into the Lagrangian the term id)F;L F™" as it was done by the pioneers of the axion

n
physics [17] — [25]. The pseudoscalar (axion) field ¢ enters this term linearly in front of the pseudo-
invariant of the electromagnetic field presented by the convolution of the Maxwell tensor Fy,, and its
dual F;, . This term is invariant with respect to the discrete symmetry transformation ¢ — ¢ + 27n
(n is an integer), since the rest term 27nF, F™" is the perfect divergence and thus it can be avoided
from the action functional. If one uses arbitrary nonlinear function f(¢) instead of linear function ¢,
this symmetry happens to be lost. Clearly, this function has to be periodic f(¢+27n) = f(¢), odd, and
has to tend to ¢, when ¢ is small. One can choose, for instance, f(¢) = sin ¢. But we went further and
applied the Jackson’s SO(2) symmetry intrinsic for the electrodynamics [26], thus obtaining the new
unified invariant term

1
7= 1 (cos ¢Fpn F™™™ + sin o Fr  F™") | Q)

with necessary periodicity [27,|28]. When ¢ = 0, we deal with the standard Lagrangian of the
electromagnetic field ianFm”; when ¢ is small, the new linear term is iqu;mFm”, typical for the
classical axion electrodynamics. Since the multiplier sin ¢ in front of the pseudo-invariant F,  F™" is
the odd function, the second term remains a true scalar; the first term, which contains the even function
cos ¢ also is true scalar. As it was shown in [27}/28], this idea of sin/cosine extension of the theory
happened to be fruitful in application to cosmology, in particular, for description of axionically induced
anomalous electric flares in the magnetized early Universe.

The next step in the extension of the axion theory was the study of models nonlinear with respect to
the Maxwell tensor. As an interesting case, we consider the nonlinear term #(Z) in the Lagrangian [28],
which tends to Z for the small argument. In this work we follow this line, and formulate the relativistic
axion magnetohydrodynamic nonlinear both in the axion field and in the Maxwell tensor. The work
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contains the general formalism of the relativistic nonlinear axion fluid dynamics, as well as, the truncated
models of magnetohydrodynamics of two types. The model of the first type is based on the standard
assumption that the electric conductivity o is very large, ¢ — oo; in this case one supposes that the
electric field in the medium has to be vanishing providing the electric current to be finite. For the models
of the second (principally new) type we assume that the axion field tends to the value ¢ — 7 +27n and
the product o cos ¢ — co x 0 remains finite, but the spatial part of the electric current now is vanishing.
Such models are characterized by the anomalous growth of the axionically induced electric field at least
in two cases: first, when there exists axionically induced magnetic conductivity; second, when the fluid
flow possesses the rotation of the velocity four-vector. In this paper we formulate the general formalism
and the perspective program of investigations, and in the nearest future we hope to apply the prepared
formalism to the analysis of magnetohydrodynamic flows in cosmological and astrophysical systems.

1. The formalism
1.1. The structure of the action functional

The total action functional is considered to be presented by four elements

R+ 2A
2K

S(tot) = /d4wﬁ{ + LEMma) + Liaxion) + L(matter)} : (1.1)
Here g is the determinant of the metric tensor; R is the Ricci scalar; A is the cosmological constant;
k = 8nG is the Einstein constant (¢ = 1). The Lagrangian of the electromagnetic field interacting
nonlinearly with the pseudoscalar (axion) field ¢, indicated as L(gwma), is presented as an appropriate
(linear or nonlinear) function

Lignia) = H(T) (1.2)

of the unified invariant . As usual, F,,, is the Maxwell tensor, and F*™" = %em”qupq is its dual;
the Levi-Civita tensor e”"4 = 7227 ig defined with the equality F°'?3 = 1. When the dimensionless
pseudoscalar ¢ vanishes, we obtain from (|Il) the standard invariant of the electromagnetic field %anF mmn,
When the pseudoscalar field is nonvanishing, but it tends to zero ¢ — 0, the unified invariant converts

into the term

1
T o [FunE™ + 6 F ™) (1.3)

which is typical for the axion electrodynamics. The Lagrangian of the pure pseudoscalar (axion) field
1
L(axion) = 5\113 [V((b) - vm¢vm¢] (14)

contains the periodic axion potential

V(¢) = 2m3% (1 —cos @) , (1.5)

which is invariant wit respect to the discrete symmetry transformation and converts into the potential
V = m3 ¢?, when ¢ is small. The parameter ma describes the rest mass of the axion, and the parameter
V¥ is connected with the axion—-photon coupling constant g4.~ as follows \I%o = JAyy-

The Lagrangian of the matter L(yattery iS not presented explicitly, and is the subject of
phenomenological modeling.

1.2. Master equations

1.2.1 Master equations for the electromagnetic field

The Maxwell tensor Fj is connected with the potential of the electromagnetic field Ay by the
known relationship
Fy. =V, A, — ViA; . (1.6)
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As the consequence of this definition one obtains the first series of the Maxwell equations
Vit =0, (1.7)

which converts into identity, when (L.6) holds. Variation of the total action functional (1.1) with respect
to the electromagnetic potential A; gives the equations

kaik == ji7 (18)
where 5L
i (matter)
_ 1.
Tt = - e (19)
is the electric current, and
H™* = H'(T) [cos pF™* + sin p ] (1.10)

plays the role of the nonlinear tensor of the electromagnetic induction. Since the following identity holds
V,Vi.H* =0, (1.11)

one has to add the equation
VeI =0 (1.12)

into the total set of Master equations of the model. The term [J* is the subject of the phenomenological
modeling.
1.2.2 Master equation for the axion field

Variation with respect to the pseudoscalar field ¢ yields

1dV 1 (1,,
mn . . L _ = I e anan F* F’mn , 11
gV, V ¢+2—d¢ \113{47'[( ) [—sing +coso Fr, ]+g} (1.13)

where the pseudoscalar source G appears formally as the variational derivative of the matter Lagrangian

6L(matter)

= 1.14
g — e (114)
The term G also is the subject of the phenomenological modeling.
1.2.3 Master equations for the gravitational field
Variation with respect to the metric gives the equations of the gravitational field
1 O
Rpq — ggqu —Agpq = KTISZ 9, (1.15)

)

where R, is the Ricci tensor. The total (effective) stress energy tensor T1§;°t consists of three terms

Tp((t]ot) _ Tp((];]MA) + Té;xion) + Té;natter) ) (116)

)

The stress-energy tensor Tég MA , associated with the nonlinear electromagnetic field coupled nonlinearly

to the axion field, is of the form
1
TEMY = 24(T) cos ¢ 19k FnnF™ = Fyn F™ |+ git [H(D) = T-H(T)] - (1.17)

It coincides with the standard stress-energy tensor of the electromagnetic field, when ¢ = 0 and H(Z) =
Z. The trace of the tensor (1.17)

TEMN g = 4 [H(T) - T H/(T)) (1.18)
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is not equal to zero, when we use the nonlinear version of the theory.
The stress energy tensor of the pure pseudoscalar field is presented as

T — w2 {vmvm + %gl—k V(¢) — qusqus]} . (1.19)

The stress-energy tensor of the matter is presented formally as

matter (_2) g
Tlgq sther) — \/jgc;gpq {\/ _gL(matter)} . (1.20)

It requires the algebraic decomposition and phenomenological decoding.

1.2.4 Conservation law and balance equations

The Bianchi identities require that
VTtV — o (1.21)

i.e., the total energy and momentum are conserved. In order to simplify the balance equations for the
matter quantities, we present some auxiliary calculations. First, we consider the divergence of the axion

stress-energy tensor ([1.19) on the solution to the equation ([1.13)

v, Tik@xion) — _yig %H’(Z)FW” (—singF,, +cosFr )+ G| (1.22)

second, we calculate the divergence of the electromagnetic stress-energy tensor (1.17)) on the solutions

to the equations (1.8)), (|1.10)
) . 1 .
V THREMA) — pik 7 ZV%’H’(I)F"”” (= sin ¢Fpn + cos oFF ) (1.23)

and obtain finally
VkTik(matter) — gvzqs o szjk . (124)

1.3. Phenomenology

1.3.1 Macroscopic velocity four-vector and irreducible decomposition of its covariant
derivative

Phenomenological approach requires the appropriate velocity four-vector U* to be defined as the
starting point of the decomposition of the necessary quantities. We follow the Eckart’s approach [29]
and consider the timelike unit velocity four-vector U* to be defined as follows:

NF=nU*, U*U,=1, n=+/N,NFk=N*U,, (1.25)

where N* is the four-vector of particle number flux, and n is the scalar of particle number. Generally, the
plasma is the multi-component system, and thus N* = N(ka), where (a) indicates the sort of particle.
(a)

With this four-vector we decompose all the tensor quantities using the so-called longitudinal and
transversal components. In particular, the covariant derivative can be decomposed as follows

L L , . . ,
Vie=UD+Vy, D=U°V,, Vk:AiVj, Ai:(;iijUk. (1.26)
Ai is the projector. The covariant derivative V,U; can be decomposed in the standard sum

1
ViUj = UpDU; + okj + wij + 38850, (1.27)
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where the acceleration four-vector DU}, the symmetric traceless shear tensor oy, the skew - symmetric
vorticity tensor wy; and the expansion scalar © are presented by the well-known formulas

1 /L L 1 1 /L L .
DU; =U°V,U;, oy = 3 <V]<;Uj + VjUk;) — gAk;j@, Whj = 5 <VkUj — V]'Uk;) , 0=V, U".
(1.28)
The four-vector of the electric current also can be decomposed with respect to the U*

1 1 .
TJE=pUr+ %, p=T"U,, J¥=ALT;. (1.29)

1.3.2 Decomposition of the Maxwell tensor and its dual

We use the standard definitions of the electric field four-vector E¥ and of the magnetic induction

four-vector B¥ [1]
E* = Fkmy,, . BF =F**my,, - E*U,=0, B*U,=0, (1.30)
which give the standard decompositions
FFm — Emy™ — EnU™ — ™M B,,  F*MM = BMU™ — B"U™ + "B, . (1.31)

Here the absolutely skew-symmetric symbol with three-indices is defined as n™"* = ™™s!U;; it is
orthogonal to the velocity four-vector, n™"**U, = 0.

1.3.3 Equation of the magnetic flux balance and the Faraday equation

Now we apply the decompositions ((1.31)) to (1.7) and consider the convolution U;Vj F*** = (. This
procedure yields the scalar balance equation

1
ViBF = "™ Ey W - (1.32)

Clearly, when the vorticity of the medium flow is absent, w,,,, = 0, we deal with the standard conservation
law of the magnetic flux. Similarly, the convolution AlV; F*** = ( gives the Faraday law

L 2
AZDBI“ + '™V, E, = —§®Bl + By (akl + wkl) — '™ E,, DU, + Aiesmk”wknEm , (1.33)

the source terms in the right-hand side of this equation are produced by the non-uniformity and
inhomogeneity of the medium flow.

1.3.4 Axionic extension of the Gauss law for nonlinear electrodynamics

The equations (|1.32) and (1.33) do not contain information about the pseudoscalar (axion) field.
The function ¢ and its gradient appears in the equations (1.8) due to the structure of (1.10) and (T).
Convolution of (1.8) with the velocity four-vector gives the nonlinear axionic extension of the Gauss law

1 1 1
H'(T) {cos¢> [vkEk + 0P B wpg + B’“de)} —sin ¢Ekvk¢} + (1.34)
1 1 1
+H"(Z) (E* cos ¢ + B¥sin ¢) {cos b {EmBkang + E™V i Ep — BkaBm} +

L 1 1 1
+ Sind) |:BmvkEm + Emkam + 5 (BmBm - EmEm) Vk¢:| } =P,

where p = J™U,, is the charge density scalar. When ¢ = 0 and we deal with the linear electrodynamics,
this equation reduces to the Gauss equation in the moving medium

S ik
ViE" = —p—n"P1Bwp, - (1.35)
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1.3.5 Axionic extension of the Ampere law for nonlinear electrodynamics

Convolution of (1.8) with the projector Al gives the equation, which can be indicated as the
nonlinear axionic extension of the Ampere law

L L 2
H'(T) {cos¢ [A;DE’C—77”“"kam+BlD¢+n’“ka¢Ep+3El@—Ek(akl+wkl)—nlm"BmDUn—

. 1
— ALe*™M B wpn ] +sin ¢ <—ElD¢+77””’Bka¢> } + (1.36)

1 1L
+H"(T) {(El cos ¢+ B' sin ¢) DI+n'*? (sin pE,— cos ¢B,) ka} =J,
where the following auxiliary notations are used:

DI = cos ¢ [E™DE,, — B™" DBy, + E B™ D) +

+ sin¢ [;(BmBm — E™E,,)Dé+ B"DE,, + E’"DBm] , (1.37)
1 1 1 1
Vi = cos ¢ [EkaEm—BkaBm+EmBka¢] +

1 1 i L
+sing {Q(BmBmEmEm)vk¢+BmvkEm+Emkam] . (1.38)
When we deal with linear electrodynamics and ¢ = 0, we obtain from (1.36]) the equation

1 2 . L
ALDE* — "™, B, + ZF'© — E(o™ + ™) — '™ B,, DU, — ALle*™ B, wp, = J', 1.39
3

which can be indicated as the Ampere equation in the moving medium.

1.3.6 Decomposition of the electric current

The equation Vi7" = 0 can be now rewritten as

J_k L J_k
Dp+ p© =J"DU, — Vi J", (1.40)

and can be considered as the evolutionary equation for the charge density p. In the standard relativistic
magnetohydrodynamics the transversal component of the current four-vector is of the form
L
k k
J(standard) =ok", (141)
where o is the conductivity scalar. In general case we present the transversal component of the current
four-vector as the series

L
k k k
with respect to the number of derivatives, as the Effective Field Theory advises [30]. In this sense the
term jﬁ) contains only one derivative of the first order; the term J(’;) contains the composition of two

derivatives of the first order; second derivatives are omitted. We restrict our-selves by the first order
terms, and obtain only five appropriate ones

s 1
J¥ = 0 E¥ cos ¢ + 5B sin ¢ + vy sin ¢V*¢ + 5 cos pDU" + w30 sin ¢ wy, . (1.43)

The construction & sin ¢ plays the role of a magnetic conductivity associated with the chirality introduced
by the axion field into the electrodynamic system; this term describes the current directed along the
magnetic induction four-vector. The term vy cos pDU* has the classical analog; it describes the electric

i
current caused by the acceleration of the conductor. The term vy sin $V*¢ relates to current along the

gradient of the axion field. The last term in 1} rewritten as 2vsw” sin ¢ with the help of the angular

k

velocity four-vector w® = %nkpquq can be attributed to the current provoked by the rotation of the

chiral medium.
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1.3.7 Modification of the equation of the axion field

Taking into account the representation of the electromagnetic equations we can now rewrite the
equation for the axion field as follows:

9"V, Vi +m? sin ¢ = —% {’H’(I) [; sin p(B" By, — Ey E™) + cos (bEmBm} + g} . (1.44)
0

The pseudoscalar source G can be phenomenologically decomposed similarly to the electric current
four-vector; recollecting the terms of the zero, first and second order in derivatives we obtain

I
G = w10 sin ¢ + wy cos D¢ + w30 cos DG + wy DU* cos V¢ + (1.45)

i
+ w5 E* cos OV d + wg sin d)EkDUk + wry cos ¢nkpquwpq +

1
+ wg cos ¢BX DU}, + wg sin ¢ B¥V ¢ + w1 cos ¢77kqukwpq .

1.3.8 Decomposition of the stress - energy tensor of the matter and the evolutionary

equation for the velocity four-vector

The algebraic decomposition of the stress-energy tensor of the matter is well known:
Tik(matter) — WUzUk + Ulqk: + Uk:qz o Asz + Hik , (146)

where W is the scalar of the matter energy density, ¢' is the heat-flux four-vector, P is the Pascal
equilibrium pressure, and IT** is the tensor of non-equilibrium pressure. The rate of evolution of the
scalar W, i.e., the quantity DW, can be found from the equation U;V, T total)

(1.24):

= 0 accounting for

. 1 1
DW + (W + P)© = ¢*DU, — V.¢* + 11" (oik + 3Aik®> +GD¢ + EpJ*. (1.47)

Convolution of (1.24) with the projector Al gives the equation for the macroscopic velocity of the
medium dynamics

IS Ly kS 7l 1 ik ! < lks p
(W4 P)DU' =V'P—A;Dq" —q¢0O — ¢"V, .U — AV IT" — pE' + GV ¢ + " By J . . (1.48)
Let us add that if we follow the Eckart’s approach we have to keep in mind that the heat-flux four-vector
. L .
¢ =X (V’T—TDUZ) (1.49)

contains the phenomenological constant A, describing the heat conductivity, the spatial gradient of the
temperature 7" and the acceleration four-vector DU¥. As for the anisotropic pressure tensor, which
satisfies the relationships

. 1 _
e = Mgyix + HAsk,  oyeg™ =0, I = gHikQZka (1.50)

it can be presented using two phenomenological constants: the shear viscosity n and bulk viscosity ¢, as
follows:
Wiy = noir, 11=3CO. (1.51)

Also, we assume that W and P are connected by the two-parameter equation of state
W =W(n,T), P=PnT), (1.52)

and by the compatibility condition

ow oP
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In particular case, when W is linear in n, i.e., W = ne(T), we obtain immediately from that
P = f(n)T with arbitrary function f(n), and we can extract the known equation for the pressure of the
relativistic perfect gas P = nkgT (kp is the Boltzmann constant).

At the end of this Section we would like to emphasize that till now we considered the general
formalism, which is appropriate for moving electromagnetically active fluid. In the next Section we start
to discuss magnetohydrodynamic models with specific ansarz concerning the electric conductivity of the
system.

2. Two examples of truncated sets of equations of the axion magnetohydrodynamics
2.1. Classical approach: Approximation of infinite electric conductivity

2.1.1 Auxiliary equations

Zero order approximation of classical magnetohydrodynamics is based on the assumption that
o — oo. In this situation one assumes that the electric field four-vector has to tend to zero, E¥ — 0
providing the product o E* remains finite. In fact, we have to decompose the four-vector of the electric
field in the power series with respect to small parameter %, and in the zero order approximation to put
E’ = 0 in all the Master equations. As for the Ampere equation , it converts now into the equation
for the electric field

1

EF =
0 Cos ¢

_=pkg _ Sk _ k _ kpq o
oB"sin¢g — vy 8sin ¢V ¢ — 15 cos DU v3n Plsin g wpq+

L . 1
+H/'(T) [Cosgﬁ (—nlkmVkBm+BlD¢—nlm"BmDUn—Aﬁemm"Bmwkn) +sin ¢ nlkPprk(;s} + (2.1)
+ %’H”(Z) {B'sin ¢ [sin ¢ B" B,, D¢— cos ¢ D(B™ B,y,)] —

—n**? B}, cos ¢[sin qSBmBm%qu — cos qﬁ%k(BmBm)]}} .

The Gauss equation (1.34) can be now considered as the definition of the charge density scalar

1 1 L L
—p=H(T)cos¢ <17mqumwpq + Bkvkqﬁ) + 57{”(1)31“ sin ¢ {Sin ¢B™ B, V¢ — cos oV, (B™ B,,)| .

(2.2)
2.1.2 Equations for the magnetic field
The equations (1.32) and (1.33) can be now written in the form
1L
VeB* =0, (2.3)
1
AwDB* = B*V,.U, — B,©. (2.4)
If we consider the case, when the particle number n is conserved and thus
Vi(nU" =0 — Dn+nO =0, (2.5)
we can rewrite the equation (2.4) in the form
Bk
Al £y (n> =0, (2.6)

where £y is the Lie derivative calculated along the four-vector U 7. The equation 1’ is known as the
condition of frostbite of magnetic field lines. Formally speaking, this condition does not depend on the
axion field and does not include information about the nonlinearity of the axion electrodynamics.
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2.1.3 Equation for the axion field

The Master equation for the axion field is

1
0

1 1
=3 [cos é <w2D¢> + w3OD¢ + wy DUV ¢ + ws B DU}, + wlonkqukwpq> +
0

€
+sin ¢ (m@ + WQBkvkd)):l .

2.1.4 Equations for the velocity four-vector

The equations for the velocity four-vector (|1.48]) can be reconstructed as follows: we have to work
with the equation

1 €L . 1
(W + P)DU' = V! P-AALD(V'T-TDU") - \O(V'T-TDU")—
1 1 . 1 L.
— AMV*T-TDU*)V U - AV II*+ GV p+n!; B* T, (2.8)

L.
where .J7 should be replaced by the term

L. " , , o , i
J=H(T) [cosqﬁ (—nﬂkmkaerBﬂD¢>—nﬂm”BmDUn—Agelkm”Bmwkn> +sin qankPprkqs] +
(2.9)
1 .
+ 27—[”(1){37 sin ¢ [sin B B, D¢ — cos $D(B™ B,,)] —
. 1 1
—n’*P cos ¢ B, [sin ¢B™ B, V¢ — cos ¢Vk(BmBm)] } ,
2.1.5 The case of linear electrodynamics
When H(Z) = Z, we can simplify the equations (2.2)) and (2.1)) as follows:
pd
p=—Coso (nmqumwpq +B Vk¢> , (2.10)
k1 hkpp O ~ pk Sk k
EF = p [tan¢ (77 PB,Vi¢p — 6B — 11 V™ — 131 pquq> +
L ,
+ <BZD¢ - ygDUk—nlkakBm—nlm”BmDUn—Aﬁelkm”Bmwkn>} . (2.11)

2.2. New versions of axion magnetohydrodynamics

2.2.1 Anomalous regime in the presence of axionically induced magnetic conductivity

As was shown in |27,28] the nonlinear axion electrodynamics admits the existence of a anomalous
regime, which is characterized by the electric field E* o tan ¢ B*. When ¢ — 5 + 2mn, the electric field
grows infinitely. In the model under consideration we see that the term o cos ¢E* in remains finite
at 0 — oo, if cos¢ — 0, i.e., ¢ — F + 27n. In other words, we can remove the requirement that EF -0,
and the electric field remains finite. There are two interesting phenomenological situations based on this
idea. First, when & # 0, but v3 = 0, we can connect the electric and magnetic field by the relationship

E* = -ZB*tang, (2.12)
g
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keeping in mind that the big value of conductivity parameter in the denominator is compensated by the
large value of the function tan ¢. In order to obtain the corresponding truncated set of equations we can
put
o — g -, [P << 1, sing —cosy, cosg —siny, tangd — cotip, (2.13)
E* » ~ZB*cotyp — —- 2 BF,
o o

to all the equations obtained in Section II. One can present the result of this procedure as follows. The

equation ([1.32) converts into

. _
kak::féiyﬁm”Bkwmn, (2.14)

the Faraday law (|1.33]) takes the form
1 5 1 é
Mmﬁ%ﬁ-ﬂww:%7WWﬁﬁmmﬁmm—Mﬂm%wwmmmﬁ#
o
(2.15)

The leading order version of the axionically modified Gauss law ([1.34) can be now written as

GB™B,,

o

The leading order version of the axionically modified Ampere law ([1.36)) can be presented in the form

1
B*VL [H(T)] = —p, I= (2.16)

B(WD+5nW$>Ma)o (2.17)
D O”gb k . .

In the leading order approximation with respect to ¢ the equation ([1.44)) for the axion field requires the
function v to be found from the equation

2 -
9 9 _ L O (0 . W60
Uimy +wi® =IH (I)—2& ll (m/}) ] 701/} B*DU, . (2.18)

In particular, when w; = wg = 0, and the function H(Z) is logarithmic, i.e., H(Z) = 1

> log I% (v and Z,

are some constants) we see that v takes constant value
{u@§nijzwu2w@nj+-q : (2.19)

1L
The final remark concerns the equation for the velocity four-vector (1.48). Since now J* = 0, this

P =

SYESY

equation transforms into
IS 1y, l kS i l ik
(W4 P)DU* —=V'P+A;Dq"+ ¢ 0O+ ¢"ViU" + A VI = (2.20)

__i | kS ’ _WL& k Sy
= mbBBVH’;’-[(I)]—F(MG awB DUk>V¢>.

2.2.2 Anomalous regime in the presence of rotation in the magnetohydrodynamic flow

The second interesting case appears, if & = 0, v3 # 0 and there exists the rotation of the medium,
i.e., the angular velocity of the medium flow rotation is nonvanishing, w* = In*?9w,, # 0. The most
interesting application of this model would be the model of plasma dynamo. Based on the arguments
presented above, in this second case we can put (instead of )

2v 2v
EF = 28k tang — — 220k (2.21)

o o
into the axionically extended Faraday, Gauss and Ampere equations, as well as, into the equations for
the pseudoscalar field and for the velocity four vector. This procedure is analogous to the one presented

in the previous subsection.
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Conclusion

In this work we presented the mathematical formalism of the relativistic nonlinear axion
magnetohydrodynamics. The term nonlinear means that both fields: the pseudoscalar (axion) and the
electromagnetic one are described in the nonlinear version. In fact, we entered the threshold of the new
program execution, which can be formally divided into two sectors.

1. In the first sector of the future work we plan to extend the general formalism; to be more precise we
plan to do the following.

1.1. We plan to consider the axionically extended Born-Infeld, Euler-Heisenberg, etc. models, which are
nonlinear in the first and second invariants of the electromagnetic field.

1.2. We plan to supplement the hydrodynamic part of the established theory, which is now based on
the Eckart approach (models with bulk and shear viscosity and heat conductivity), by the elements
of the Israel-Stewart theory [31], which deals with transient irreversible (second order) relativistic
thermodynamics.

1.3. We plan to prepare the justification of the nonlinear axion magnetohydrodynamics on the base of
extension of the relativistic kinetic theory of the axionically active plasma, using the axionic modification
of the Lorentz force.

2. In the second sector of the future work we plan to study the anomalous regimes of the
magnetohydrodynamic flows; for this purpose we hope to do the following.

2.1. We hope to consider new models of anomalous accretion of the magnetized matter on the rotating
neutron stars, black holes and dyons, as well as instabilities of a new type caused by the interactions
with the axion field.

2.2. We hope to study new anomalous models of dynamo, jets production and turbulent flows.

2.3. We hope to analyze the solutions describing magnetohydrodynamic waves, shock waves based on
the introduction of the correspondingly generalized Reynolds numbers.

Wish success to our group.
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