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Àëüïèí Ò.Þ.a,1, Áàëàêèí À.Á.a,2, Âîðîõîâ À.Â.a,3

a Êàçàíñêèé ôåäåðàëüíûé óíèâåðñèòåò, ã. Êàçàíü, 420008, Ðîññèÿ.

Ñôîðìóëèðîâàíà íîâàÿ íåëèíåéíàÿ âåðñèÿ àêñèîííî ìîäèôèöèðîâàííîé îáùåðåëÿòèâèñòñêîé

ìàãíèòîãèäðîäèíàìèêè. Ñàìîñîãëàñîâàííûé ôîðìàëèçì ýòîé òåîðèè îñíîâàí íà ââåäåíèè â ëàãðàíæèàí

íîâîãî óíèôèöèðîâàííîãî ñêàëÿðíîãî èíâàðèàíòà, êâàäðàòè÷íîãî ïî òåíçîðó Ìàêñâåëëà è ñîäåðæàùåãî

ïåðèîäè÷åñêèå ôóíêöèè ïñåâäîñêàëÿðíîãî (àêñèîííîãî) ïîëÿ. Ïîñòðîåííûé óíèôèöèðîâàííûé èíâàðèàíò

è ñàìà ðàçðàáîòàííàÿ íåëèíåéíàÿ òåîðèÿ â öåëîì èíâàðèàíòíû îòíîñèòåëüíî äâóõ ñèììåòðèé: âî-ïåðâûõ,

äèñêðåòíîé ñèììåòðèè, ñâÿçàííîé ñî ñâîéñòâàìè àêñèîííîãî ïîëÿ; âî-âòîðûõ, ñèììåòðèè Äæåêñîíîâñêîãî

SO(2) òèïà, õàðàêòåðíîé äëÿ ýëåêòðîìàãíåòèçìà. Óðàâíåíèÿ, îïèñûâàþùèå ÷åòûðå-âåêòîð ñêîðîñòè

ãèäðîäèíàìè÷åñêîãî ïîòîêà, ïîñòðîåíû â ðàìêàõ òåîðèè Ýêêàðòà äëÿ âÿçêîé òåïëîïðîâîäÿùåé æèäêîñòè.

Àêñèîííî ìîäèôèöèðîâàííûå íåëèíåéíûå óðàâíåíèÿ Ôàðàäåÿ, Ãàóññà è Àìïåðà äîïîëíåíû àíçàöåì

îá àíîìàëüíî áîëüøîé ýëåêòðîïðîâîäíîñòè ñðåäû, êîòîðûé â ñòàíäàðòíîé òåîðèè àññîöèèðóåòñÿ ñ

èñ÷åçíîâåíèåì ýëåêòðè÷åñêîãî ïîëÿ. Íàìè ïðåäëîæåíû äâå ñóùåñòâåííî íîâûå íåëèíåéíûå ìîäåëè, â

ðàìêàõ êîòîðûõ àíîìàëüíî áîëüøàÿ ýëåêòðîïðîâîäíîñòü êîìïåíñèðóåòñÿ ñîîòâåòñòâóþùèì ïîâåäåíèåì

êîíå÷íîãî ïî âåëè÷èíå ïñåâäîñêàëÿðíîãî (àêñèîííîãî) ïîëÿ, îáåñïå÷èâàþùåãî ôèíèòíîñòü ýëåêòðè÷åñêîãî

ïîëÿ â ìàãíèòîãèäðîäèíàìè÷åñêîì ïîòîêå (ýòî ýëåêòðè÷åñêîå ïîëå ïðîïîðöèîíàëüíî ëèáî ñàìîìó

ìàãíèòíîìó ïîëþ, ëèáî óãëîâîé ñêîðîñòè âðàùåíèÿ ñðåäû).

Êëþ÷åâûå ñëîâà: àêñèîí, íåëèíåéíàÿ ýëåêòðîäèíàìèêà, ìàãíèòîãèäðîäèíàìè÷åñêîå òå÷åíèå.

RELATIVISTIC NONLINEAR AXION MAGNETOHYDRODYNAMICS

Alpin T.Yu.a,1, Balakin A.B.a,2, Vorohov A.V.a,3

a Kazan Federal University, Kazan, 420008, Russia.

The new nonlinear axionically extended version of the general relativistic magnetohydrodynamics is formulated.

The self-consistent formalism of this theory is based on the introduction into the Lagrangian of the new uni�ed

scalar invariant, which is quadratic in the Maxwell tensor, and contains two periodic functions of the pseudoscalar

(axion) �eld. The constructed uni�ed invariant and the elaborated nonlinear theory as a whole, are invariant

with respect to two symmetries: �rst, the discrete symmetry associated with the properties of the axion �eld;

second, the Jackson's SO(2) type symmetry intrinsic for the electromagnetism. The subsystem of the master

equations, which describes the velocity four-vector of the hydrodynamic �ow, is constructed in the framework of

Eckart's theory of viscous heat-conducting �uid. The axionically extended nonlinear Faraday, Gauss and Ampere

equations are supplemented by the ansatz about the large electric conductivity of the medium, which is usually

associated with vanishing of the electric �eld. We have suggested two essentially new nonlinear models, in the

framework of which the anomalous electric conductivity is being compensated by the appropriate behavior of
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the �nite pseudoscalar (axion) �eld, providing the electric �eld in the magnetohydrodynamic �ow to be �nite

(either to be proportional to the magnetic �eld, or to the angular velocity of the medium rotation).
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Introduction

Relativistic magnetohydrodynamics is the important part of the modern cosmic plasma physics

and �uid dynamics in the context of applications to the theory of matter accretion to the rotating

neutron stars and black holes, to the theory of structure of magnetospheres of pulsars and Sun (see,

e.g., [1] � [11] for references and description of the main problems). The canonic formalism of relativistic

magnetohydrodynamics, described in the famous book of Andr�e Lichnerowicz [1], is constantly being

extended to solve new astrophysical and cosmological problems. For instance, in the excellent paper of

Massimo Giovannini [7] the reader can �nd the applications of anomalous magnetohydrodynamics to

the relativistic domains with extreme characteristics. In that paper also one can �nd a new element

of �uid dynamics, namely, the theory of scalar/pseudoscalar �elds interacting with electromagnetic

�elds. In the paper [5] the authors consider �uids with chiral properties. The interest to these problems

is not accidental, in fact, we are on the threshold of formulation and active use of the relativistic

axion magnetohydrodynamics, which deals with interaction of the cosmic axionic dark matter with

magnetohydrodynamic �ows.

We consider the relativistic axion magnetohydrodynamics as an essential part of the relativistic

theory of the axionically active plasma (see, e.g., [12] � [16] for some speci�c results for such plasma).

We have introduced two new elements to the theory of axionically active systems. The �rst element is

connected with the nonlinear approach to the description of the axion-photon coupling. The standard

idea is to introduce into the Lagrangian the term 1
4φF

∗
mnF

mn as it was done by the pioneers of the axion

physics [17] � [25]. The pseudoscalar (axion) �eld φ enters this term linearly in front of the pseudo-

invariant of the electromagnetic �eld presented by the convolution of the Maxwell tensor Fmn and its

dual F ∗mn. This term is invariant with respect to the discrete symmetry transformation φ → φ + 2πn

(n is an integer), since the rest term 2πnF ∗mnF
mn is the perfect divergence and thus it can be avoided

from the action functional. If one uses arbitrary nonlinear function f(φ) instead of linear function φ,

this symmetry happens to be lost. Clearly, this function has to be periodic f(φ+2πn) = f(φ), odd, and

has to tend to φ, when φ is small. One can choose, for instance, f(φ) = sinφ. But we went further and

applied the Jackson's SO(2) symmetry intrinsic for the electrodynamics [26], thus obtaining the new

uni�ed invariant term

I =
1

4
(cosφFmnF

mn + sinφF ∗mnF
mn) , (I)

with necessary periodicity [27, 28]. When φ = 0, we deal with the standard Lagrangian of the

electromagnetic �eld 1
4FmnF

mn; when φ is small, the new linear term is 1
4φF

∗
mnF

mn, typical for the

classical axion electrodynamics. Since the multiplier sinφ in front of the pseudo-invariant F ∗mnF
mn is

the odd function, the second term remains a true scalar; the �rst term, which contains the even function

cosφ also is true scalar. As it was shown in [27, 28], this idea of sin/cosine extension of the theory

happened to be fruitful in application to cosmology, in particular, for description of axionically induced

anomalous electric �ares in the magnetized early Universe.

The next step in the extension of the axion theory was the study of models nonlinear with respect to

the Maxwell tensor. As an interesting case, we consider the nonlinear term H(I) in the Lagrangian [28],

which tends to I for the small argument. In this work we follow this line, and formulate the relativistic

axion magnetohydrodynamic nonlinear both in the axion �eld and in the Maxwell tensor. The work
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contains the general formalism of the relativistic nonlinear axion �uid dynamics, as well as, the truncated

models of magnetohydrodynamics of two types. The model of the �rst type is based on the standard

assumption that the electric conductivity σ is very large, σ → ∞; in this case one supposes that the

electric �eld in the medium has to be vanishing providing the electric current to be �nite. For the models

of the second (principally new) type we assume that the axion �eld tends to the value φ→ π
2 + 2πn and

the product σ cosφ→∞×0 remains �nite, but the spatial part of the electric current now is vanishing.

Such models are characterized by the anomalous growth of the axionically induced electric �eld at least

in two cases: �rst, when there exists axionically induced magnetic conductivity; second, when the �uid

�ow possesses the rotation of the velocity four-vector. In this paper we formulate the general formalism

and the perspective program of investigations, and in the nearest future we hope to apply the prepared

formalism to the analysis of magnetohydrodynamic �ows in cosmological and astrophysical systems.

1. The formalism

1.1. The structure of the action functional

The total action functional is considered to be presented by four elements

S(tot) =

∫
d4x
√
−g
{
R+ 2Λ

2κ
+ L(EMA) + L(axion) + L(matter)

}
. (1.1)

Here g is the determinant of the metric tensor; R is the Ricci scalar; Λ is the cosmological constant;

κ = 8πG is the Einstein constant (c = 1). The Lagrangian of the electromagnetic �eld interacting

nonlinearly with the pseudoscalar (axion) �eld φ, indicated as L(EMA), is presented as an appropriate

(linear or nonlinear) function

L(EMA) = H(I) (1.2)

of the uni�ed invariant (I). As usual, Fmn is the Maxwell tensor, and F ∗mn = 1
2ε
mnpqFpq is its dual;

the Levi-Civita tensor εmnpq = Emnpq
√
−g is de�ned with the equality E0123 = 1. When the dimensionless

pseudoscalar φ vanishes, we obtain from (I) the standard invariant of the electromagnetic �eld 1
4FmnF

mn.

When the pseudoscalar �eld is nonvanishing, but it tends to zero φ→ 0, the uni�ed invariant converts

into the term

I → 1

4
[FmnF

mn + φ F ∗mnF
mn] , (1.3)

which is typical for the axion electrodynamics. The Lagrangian of the pure pseudoscalar (axion) �eld

L(axion) =
1

2
Ψ2

0 [V (φ)−∇mφ∇mφ] (1.4)

contains the periodic axion potential

V (φ) = 2m2
A (1− cosφ) , (1.5)

which is invariant wit respect to the discrete symmetry transformation and converts into the potential

V = m2
Aφ

2, when φ is small. The parameter mA describes the rest mass of the axion, and the parameter

Ψ0 is connected with the axion�photon coupling constant gAγγ as follows 1
Ψ0

= gAγγ .

The Lagrangian of the matter L(matter) is not presented explicitly, and is the subject of

phenomenological modeling.

1.2. Master equations

1.2.1 Master equations for the electromagnetic �eld

The Maxwell tensor Fik is connected with the potential of the electromagnetic �eld Ak by the

known relationship

Fik = ∇iAk −∇kAi . (1.6)
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As the consequence of this de�nition one obtains the �rst series of the Maxwell equations

∇kF ∗ik = 0 , (1.7)

which converts into identity, when (1.6) holds. Variation of the total action functional (1.1) with respect

to the electromagnetic potential Ai gives the equations

∇kHik = J i , (1.8)

where

J i = −
δL(matter)

δAi
(1.9)

is the electric current, and

Hik = H′(I)
[
cosφF ik + sinφF ∗ik

]
(1.10)

plays the role of the nonlinear tensor of the electromagnetic induction. Since the following identity holds

∇i∇kHik = 0 , (1.11)

one has to add the equation

∇kJ k = 0 (1.12)

into the total set of Master equations of the model. The term J k is the subject of the phenomenological
modeling.

1.2.2 Master equation for the axion �eld

Variation with respect to the pseudoscalar �eld φ yields

gmn∇m∇nφ+
1

2

dV

dφ
= − 1

Ψ2
0

{
1

4
H′(I) [− sinφ FmnF

mn + cosφ F ∗mnF
mn] + G

}
, (1.13)

where the pseudoscalar source G appears formally as the variational derivative of the matter Lagrangian

G =
δL(matter)

δφ
. (1.14)

The term G also is the subject of the phenomenological modeling.

1.2.3 Master equations for the gravitational �eld

Variation with respect to the metric gives the equations of the gravitational �eld

Rpq −
1

2
gpqR− Λgpq = κT (tot)

pq , (1.15)

where Rpq is the Ricci tensor. The total (e�ective) stress energy tensor T
(tot)
pq consists of three terms

T (tot)
pq = T (EMA)

pq + T (axion)
pq + T (matter)

pq . (1.16)

The stress-energy tensor T
(EMA)
pq , associated with the nonlinear electromagnetic �eld coupled nonlinearly

to the axion �eld, is of the form

T
(EMA)
ik = H′(I) cosφ

[
1

4
gikFmnF

mn − FimF m
k

]
+ gik [H(I)− I · H′(I)] . (1.17)

It coincides with the standard stress-energy tensor of the electromagnetic �eld, when φ = 0 and H(I) =

I. The trace of the tensor (1.17)

T
(EMA)
ik gik = 4 [H(I)− I · H′(I)] (1.18)
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is not equal to zero, when we use the nonlinear version of the theory.

The stress energy tensor of the pure pseudoscalar �eld is presented as

T
(axion)
ik = Ψ2

0

{
∇iφ∇kφ+

1

2
gik [V (φ)−∇pφ∇pφ]

}
. (1.19)

The stress-energy tensor of the matter is presented formally as

T (matter)
pq =

(−2)√
−g

δ

δgpq
{√
−gL(matter)

}
. (1.20)

It requires the algebraic decomposition and phenomenological decoding.

1.2.4 Conservation law and balance equations

The Bianchi identities require that

∇kT (tot)ik = 0 , (1.21)

i.e., the total energy and momentum are conserved. In order to simplify the balance equations for the

matter quantities, we present some auxiliary calculations. First, we consider the divergence of the axion

stress-energy tensor (1.19) on the solution to the equation (1.13)

∇kT ik(axion) = −∇iφ
[

1

4
H′(I)Fmn (− sinφFmn + cosφF ∗mn) + G

]
, (1.22)

second, we calculate the divergence of the electromagnetic stress-energy tensor (1.17) on the solutions

to the equations (1.8), (1.10)

∇kT ik(EMA) = F ikJk +
1

4
∇iφH′(I)Fmn (− sinφFmn + cosφF ∗mn) , (1.23)

and obtain �nally

∇kT ik(matter) = G∇iφ− F ikJk . (1.24)

1.3. Phenomenology

1.3.1 Macroscopic velocity four-vector and irreducible decomposition of its covariant
derivative

Phenomenological approach requires the appropriate velocity four-vector Uk to be de�ned as the

starting point of the decomposition of the necessary quantities. We follow the Eckart's approach [29]

and consider the timelike unit velocity four-vector Uk to be de�ned as follows:

Nk = nUk , UkUk = 1 , n =
√
NkNk = NkUk , (1.25)

where Nk is the four-vector of particle number �ux, and n is the scalar of particle number. Generally, the

plasma is the multi-component system, and thus Nk =
∑
(a)

Nk
(a), where (a) indicates the sort of particle.

With this four-vector we decompose all the tensor quantities using the so-called longitudinal and

transversal components. In particular, the covariant derivative can be decomposed as follows

∇k = UkD +
⊥
∇k , D = Us∇s ,

⊥
∇k = ∆j

k∇j , ∆j
k = δjk − U

jUk . (1.26)

∆j
k is the projector. The covariant derivative ∇kUj can be decomposed in the standard sum

∇kUj = UkDUj + σkj + ωkj +
1

3
∆kjΘ , (1.27)
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where the acceleration four-vector DUj , the symmetric traceless shear tensor σkj , the skew - symmetric

vorticity tensor ωkj and the expansion scalar Θ are presented by the well-known formulas

DUj = Us∇sUj , σkj =
1

2

(
⊥
∇kUj +

⊥
∇jUk

)
− 1

3
∆kjΘ , ωkj =

1

2

(
⊥
∇kUj −

⊥
∇jUk

)
, Θ = ∇kUk .

(1.28)

The four-vector of the electric current also can be decomposed with respect to the Uk

J k = ρUk +
⊥
Jk , ρ = JmUm ,

⊥
Jk = ∆j

kJj . (1.29)

1.3.2 Decomposition of the Maxwell tensor and its dual

We use the standard de�nitions of the electric �eld four-vector Ek and of the magnetic induction

four-vector Bk [1]

Ek = F kmUm , Bk = F ∗kmUm → EkUk = 0 , BkUk = 0 , (1.30)

which give the standard decompositions

F km = EmUn − EnUm − ηmnsBs , F ∗km = BmUn −BnUm + ηmnsEs . (1.31)

Here the absolutely skew-symmetric symbol with three-indices is de�ned as ηmns = εmnslUl; it is

orthogonal to the velocity four-vector, ηmnsUs = 0.

1.3.3 Equation of the magnetic �ux balance and the Faraday equation

Now we apply the decompositions (1.31) to (1.7) and consider the convolution Ui∇kF ∗ik = 0. This

procedure yields the scalar balance equation

⊥
∇kBk = ηkmnEk ωmn . (1.32)

Clearly, when the vorticity of the medium �ow is absent, ωmn = 0, we deal with the standard conservation

law of the magnetic �ux. Similarly, the convolution ∆l
i∇kF ∗ik = 0 gives the Faraday law

∆l
kDB

k + ηlmn
⊥
∇mEn = −2

3
ΘBl +Bk

(
σkl + ωkl

)
− ηlmnEmDUn + ∆l

sε
smknωknEm , (1.33)

the source terms in the right-hand side of this equation are produced by the non-uniformity and

inhomogeneity of the medium �ow.

1.3.4 Axionic extension of the Gauss law for nonlinear electrodynamics

The equations (1.32) and (1.33) do not contain information about the pseudoscalar (axion) �eld.

The function φ and its gradient appears in the equations (1.8) due to the structure of (1.10) and (I).

Convolution of (1.8) with the velocity four-vector gives the nonlinear axionic extension of the Gauss law

H′(I)

{
cosφ

[
⊥
∇kEk + ηmpqBmωpq +Bk

⊥
∇kφ

]
− sinφEk

⊥
∇kφ

}
+ (1.34)

+H′′(I)
(
Ek cosφ+Bk sinφ

){
cosφ

[
EmB

m
⊥
∇kφ+ Em

⊥
∇kEm −Bm

⊥
∇kBm

]
+

+ sinφ

[
Bm

⊥
∇kEm + Em

⊥
∇kBm +

1

2
(BmBm − EmEm)

⊥
∇kφ

]}
= −ρ ,

where ρ = JmUm is the charge density scalar. When φ = 0 and we deal with the linear electrodynamics,

this equation reduces to the Gauss equation in the moving medium

⊥
∇kEk = −ρ− ηmpqBmωpq . (1.35)
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1.3.5 Axionic extension of the Ampere law for nonlinear electrodynamics

Convolution of (1.8) with the projector ∆l
i gives the equation, which can be indicated as the

nonlinear axionic extension of the Ampere law

H′(I)

{
cosφ

[
∆l
kDE

k−ηlkm
⊥
∇kBm+BlDφ+ηklp

⊥
∇kφEp+

2

3
ElΘ−Ek(σkl+ωkl)−ηlmnBmDUn−

−∆l
iε
ikmnBmωkn

]
+ sinφ

(
−ElDφ+ηlkpBp

⊥
∇kφ

)}
+ (1.36)

+H′′(I)

[(
El cosφ+Bl sinφ

)
DI+ηlkp (sinφEp− cosφBp)

⊥
∇kI

]
=
⊥
J l ,

where the following auxiliary notations are used:

DI = cosφ [EmDEm −BmDBm + EmB
mDφ] +

+ sinφ

[
1

2
(BmBm − EmEm)Dφ+BmDEm + EmDBm

]
, (1.37)

⊥
∇kI = cosφ

[
Em

⊥
∇kEm−Bm

⊥
∇kBm+EmB

m
⊥
∇kφ

]
+

+ sinφ

[
1

2
(BmBm−EmEm)

⊥
∇kφ+Bm

⊥
∇kEm+Em

⊥
∇kBm

]
. (1.38)

When we deal with linear electrodynamics and φ = 0, we obtain from (1.36) the equation

∆l
kDE

k − ηlkm
⊥
∇kBm +

2

3
ElΘ− Ek(σkl + ωkl)− ηlmnBmDUn −∆l

iε
ikmnBmωkn =

⊥
J l , (1.39)

which can be indicated as the Ampere equation in the moving medium.

1.3.6 Decomposition of the electric current

The equation ∇kJ k = 0 can be now rewritten as

Dρ+ ρΘ =
⊥
JkDUk −

⊥
∇k
⊥
Jk , (1.40)

and can be considered as the evolutionary equation for the charge density ρ. In the standard relativistic

magnetohydrodynamics the transversal component of the current four-vector is of the form

⊥
Jk(standard) = σEk , (1.41)

where σ is the conductivity scalar. In general case we present the transversal component of the current

four-vector as the series
⊥
Jk = J k(1) + J k(2) + ... (1.42)

with respect to the number of derivatives, as the E�ective Field Theory advises [30]. In this sense the

term J k(1) contains only one derivative of the �rst order; the term J k(2) contains the composition of two

derivatives of the �rst order; second derivatives are omitted. We restrict our-selves by the �rst order

terms, and obtain only �ve appropriate ones

⊥
Jk = σEk cosφ+ σ̃Bk sinφ+ ν1 sinφ

⊥
∇kφ+ ν2 cosφDUk + ν3η

kpq sinφ ωpq . (1.43)

The construction σ̃ sinφ plays the role of a magnetic conductivity associated with the chirality introduced

by the axion �eld into the electrodynamic system; this term describes the current directed along the

magnetic induction four-vector. The term ν2 cosφDUk has the classical analog; it describes the electric

current caused by the acceleration of the conductor. The term ν1 sinφ
⊥
∇kφ relates to current along the

gradient of the axion �eld. The last term in (1.43) rewritten as 2ν3ω
k sinφ with the help of the angular

velocity four-vector ωk = 1
2η
kpqωpq can be attributed to the current provoked by the rotation of the

chiral medium.
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1.3.7 Modi�cation of the equation of the axion �eld

Taking into account the representation of the electromagnetic equations we can now rewrite the

equation for the axion �eld as follows:

gmn∇m∇nφ+m2
A sinφ = − 1

Ψ2
0

{
H′(I)

[
1

2
sinφ(BmBm − EmEm) + cosφEmBm

]
+ G

}
. (1.44)

The pseudoscalar source G can be phenomenologically decomposed similarly to the electric current

four-vector; recollecting the terms of the zero, �rst and second order in derivatives we obtain

G = ω1Θ sinφ+ ω2 cosφDφ+ ω3Θ cosφDφ+ ω4DU
k cosφ

⊥
∇kφ+ (1.45)

+ ω5E
k cosφ

⊥
∇kφ+ ω6 sinφEkDUk + ω7 cosφηkpqEkωpq +

+ ω8 cosφBkDUk + ω9 sinφBk
⊥
∇kφ+ ω10 cosφηkpqBkωpq .

1.3.8 Decomposition of the stress - energy tensor of the matter and the evolutionary
equation for the velocity four-vector

The algebraic decomposition of the stress-energy tensor of the matter is well known:

T ik(matter) = WU iUk + U iqk + Ukqi −∆ikP + Πik , (1.46)

where W is the scalar of the matter energy density, qi is the heat-�ux four-vector, P is the Pascal

equilibrium pressure, and Πik is the tensor of non-equilibrium pressure. The rate of evolution of the

scalar W , i.e., the quantity DW , can be found from the equation Ui∇kT ik(total) = 0 accounting for

(1.24):

DW + (W + P )Θ = qkDUk −∇kqk + Πik

(
σik +

1

3
∆ikΘ

)
+ GDφ+ Ek

⊥
Jk . (1.47)

Convolution of (1.24) with the projector ∆l
i gives the equation for the macroscopic velocity of the

medium dynamics

(W + P )DU l =
⊥
∇lP −∆l

iDq
i − qlΘ− qk

⊥
∇kU l −∆l

i∇kΠik − ρEl + G
⊥
∇lφ+ ηlksBs

⊥
Jk . (1.48)

Let us add that if we follow the Eckart's approach we have to keep in mind that the heat-�ux four-vector

qi = λ

(
⊥
∇iT−TDU i

)
(1.49)

contains the phenomenological constant λ, describing the heat conductivity, the spatial gradient of the

temperature T and the acceleration four-vector DUk. As for the anisotropic pressure tensor, which

satis�es the relationships

Πik = Π(0)ik + Π∆ik , Π(0)ikg
ik = 0 , Π =

1

3
Πikg

ik , (1.50)

it can be presented using two phenomenological constants: the shear viscosity η and bulk viscosity ζ, as

follows:

Πik(0) = ησik , Π = 3ζΘ . (1.51)

Also, we assume that W and P are connected by the two-parameter equation of state

W = W (n, T ) , P = P (n, T ) , (1.52)

and by the compatibility condition

n
∂W

∂n
+ T

∂P

∂T
= W + P . (1.53)
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In particular case, when W is linear in n, i.e., W = ne(T ), we obtain immediately from (1.53) that

P = f(n)T with arbitrary function f(n), and we can extract the known equation for the pressure of the

relativistic perfect gas P = nkBT (kB is the Boltzmann constant).

At the end of this Section we would like to emphasize that till now we considered the general

formalism, which is appropriate for moving electromagnetically active �uid. In the next Section we start

to discuss magnetohydrodynamic models with speci�c ansarz concerning the electric conductivity of the

system.

2. Two examples of truncated sets of equations of the axion magnetohydrodynamics

2.1. Classical approach: Approximation of in�nite electric conductivity

2.1.1 Auxiliary equations

Zero order approximation of classical magnetohydrodynamics is based on the assumption that

σ → ∞. In this situation one assumes that the electric �eld four-vector has to tend to zero, Ek → 0

providing the product σEk remains �nite. In fact, we have to decompose the four-vector of the electric

�eld in the power series with respect to small parameter 1
σ , and in the zero order approximation to put

Ei = 0 in all the Master equations. As for the Ampere equation (1.36), it converts now into the equation

for the electric �eld

Ek =
1

σ cosφ

{
−σ̃Bk sinφ− ν1 sinφ

⊥
∇kφ− ν2 cosφDUk − ν3η

kpq sinφ ωpq+

+H′(I)

[
cosφ

(
−ηlkm

⊥
∇kBm+BlDφ−ηlmnBmDUn−∆l

iε
ikmnBmωkn

)
+ sinφ ηlkpBp

⊥
∇kφ

]
+ (2.1)

+
1

2
H′′(I)

{
Bl sinφ [sinφBmBmDφ− cosφD(BmBm)]−

− ηlkpBp cosφ[sinφBmBm
⊥
∇kφ − cosφ

⊥
∇k(BmBm)]}

}
.

The Gauss equation (1.34) can be now considered as the de�nition of the charge density scalar

− ρ = H′(I) cosφ

(
ηmpqBmωpq +Bk

⊥
∇kφ

)
+

1

2
H′′(I)Bk sinφ

[
sinφBmBm

⊥
∇kφ− cosφ

⊥
∇k(BmBm)

]
.

(2.2)

2.1.2 Equations for the magnetic �eld

The equations (1.32) and (1.33) can be now written in the form

⊥
∇kBk = 0 , (2.3)

∆klDB
k = Bk

⊥
∇kUl −BlΘ . (2.4)

If we consider the case, when the particle number n is conserved and thus

∇k(nUk) = 0 → Dn+ nΘ = 0 , (2.5)

we can rewrite the equation (2.4) in the form

∆l
k£U

(
Bk

n

)
= 0 , (2.6)

where £U is the Lie derivative calculated along the four-vector U j . The equation (2.6) is known as the

condition of frostbite of magnetic �eld lines. Formally speaking, this condition does not depend on the

axion �eld and does not include information about the nonlinearity of the axion electrodynamics.
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2.1.3 Equation for the axion �eld

The Master equation for the axion �eld is

gmn∇m∇nφ+ sinφ

[
m2
A +

1

2Ψ2
0

H′(I)BmBm

]
= (2.7)

= − 1

Ψ2
0

[
cosφ

(
ω2Dφ+ ω3ΘDφ+ ω4DU

k
⊥
∇kφ+ ω8B

kDUk + ω10η
kpqBkωpq

)
+

+ sinφ

(
ω1Θ + ω9B

k
⊥
∇kφ

)]
.

2.1.4 Equations for the velocity four-vector

The equations for the velocity four-vector (1.48) can be reconstructed as follows: we have to work

with the equation

(W + P )DU l =
⊥
∇lP−λ∆l

iD(
⊥
∇iT−TDU i)−λΘ(

⊥
∇lT−TDU l)−

− λ(
⊥
∇kT−TDUk)

⊥
∇kU l−∆l

i∇kΠik+G
⊥
∇lφ+ηl·jsB

s
⊥
Jj , (2.8)

where
⊥
Jj should be replaced by the term

⊥
Jj = H′(I)

[
cosφ

(
−ηjkm

⊥
∇kBm+BjDφ−ηjmnBmDUn−∆j

i ε
ikmnBmωkn

)
+ sinφηjkpBp

⊥
∇kφ

]
+

(2.9)

+
1

2
H′′(I)

{
Bj sinφ [sinφBmBmDφ− cosφD(BmBm)]−

− ηjkp cosφBp

[
sinφBmBm

⊥
∇kφ− cosφ

⊥
∇k(BmBm)

]}
,

2.1.5 The case of linear electrodynamics

When H(I) = I, we can simplify the equations (2.2) and (2.1) as follows:

ρ = − cosφ

(
ηmpqBmωpq +Bk

⊥
∇kφ

)
, (2.10)

Ek =
1

σ

[
tanφ

(
ηlkpBp

⊥
∇kφ− σ̃Bk − ν1

⊥
∇kφ− ν3η

kpqωpq

)
+

+

(
BlDφ− ν2DU

k−ηlkm
⊥
∇kBm−ηlmnBmDUn−∆l

iε
ikmnBmωkn

)]
. (2.11)

2.2. New versions of axion magnetohydrodynamics

2.2.1 Anomalous regime in the presence of axionically induced magnetic conductivity

As was shown in [27,28] the nonlinear axion electrodynamics admits the existence of a anomalous

regime, which is characterized by the electric �eld Ek ∝ tanφBk. When φ→ π
2 + 2πn, the electric �eld

grows in�nitely. In the model under consideration we see that the term σ cosφEk in (1.43) remains �nite

at σ →∞, if cosφ→ 0, i.e., φ→ π
2 + 2πn. In other words, we can remove the requirement that Ek → 0,

and the electric �eld remains �nite. There are two interesting phenomenological situations based on this

idea. First, when σ̃ 6= 0, but ν3 = 0, we can connect the electric and magnetic �eld by the relationship

Ek = − σ̃
σ
Bk tanφ , (2.12)
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keeping in mind that the big value of conductivity parameter in the denominator is compensated by the

large value of the function tanφ. In order to obtain the corresponding truncated set of equations we can

put

φ→ π

2
− ψ , |ψ| << 1 , sinφ→ cosψ , cosφ→ sinψ , tanφ→ cotψ , (2.13)

Ek → − σ̃
σ
Bk cotψ → − σ̃

σψ
Bk ,

to all the equations obtained in Section II. One can present the result of this procedure as follows. The

equation (1.32) converts into
⊥
∇kBk = − σ̃

σψ
ηkmnBk ωmn , (2.14)

the Faraday law (1.33) takes the form

∆l
kDB

k + ΘBl −Bk
⊥
∇kU l =

σ̃

σψ

ηlmn⊥∇mBn + ηlmnBmDUn −∆l
sε
smknωknBm + ηlmnBn

⊥
∇mψ
ψ

 .
(2.15)

The leading order version of the axionically modi�ed Gauss law (1.34) can be now written as

Bk
⊥
∇k [H′(I)] = −ρ , I = − σ̃B

mBm
σψ

. (2.16)

The leading order version of the axionically modi�ed Ampere law (1.36) can be presented in the form

Bp

(
glpD +

σ̃

σψ
ηlpk

⊥
∇k
)
H′(I) = 0 . (2.17)

In the leading order approximation with respect to ψ the equation (1.44) for the axion �eld requires the

function ψ to be found from the equation

Ψ2
0m

2
A + ω1Θ = IH′(I)

σψ

2σ̃

[
1−

(
σ̃

σψ

)2
]
− ω6σ̃

σψ
BkDUk . (2.18)

In particular, when ω1 = ω6 = 0, and the function H(I) is logarithmic, i.e., H(I) = 1
ν log II∗ (ν and I∗

are some constants) we see that ψ takes constant value

ψ =
σ̃

σ

[
νΨ2

0m
2
A ±

√
ν2Ψ4

0m
4
A + 1

]
. (2.19)

The �nal remark concerns the equation for the velocity four-vector (1.48). Since now
⊥
Jk = 0, this

equation transforms into

(W + P )DU l −
⊥
∇lP + ∆l

iDq
i + qlΘ + qk

⊥
∇kU l + ∆l

i∇kΠik = (2.20)

= − σ̃

σψ
BlBk

⊥
∇k [H′(I)] +

(
ω1Θ− ω6σ̃

σψ
BkDUk

)
⊥
∇lφ .

2.2.2 Anomalous regime in the presence of rotation in the magnetohydrodynamic �ow

The second interesting case appears, if σ̃ = 0, ν3 6= 0 and there exists the rotation of the medium,

i.e., the angular velocity of the medium �ow rotation is nonvanishing, ωk = 1
2η
kpqωpq 6= 0. The most

interesting application of this model would be the model of plasma dynamo. Based on the arguments

presented above, in this second case we can put (instead of (2.12))

Ek = −2ν3

σ
ωk tanφ→ −2ν3

σψ
ωk (2.21)

into the axionically extended Faraday, Gauss and Ampere equations, as well as, into the equations for

the pseudoscalar �eld and for the velocity four vector. This procedure is analogous to the one presented

in the previous subsection.
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Conclusion

In this work we presented the mathematical formalism of the relativistic nonlinear axion

magnetohydrodynamics. The term nonlinear means that both �elds: the pseudoscalar (axion) and the

electromagnetic one are described in the nonlinear version. In fact, we entered the threshold of the new

program execution, which can be formally divided into two sectors.

1. In the �rst sector of the future work we plan to extend the general formalism; to be more precise we

plan to do the following.

1.1. We plan to consider the axionically extended Born-Infeld, Euler-Heisenberg, etc. models, which are

nonlinear in the �rst and second invariants of the electromagnetic �eld.

1.2. We plan to supplement the hydrodynamic part of the established theory, which is now based on

the Eckart approach (models with bulk and shear viscosity and heat conductivity), by the elements

of the Israel-Stewart theory [31], which deals with transient irreversible (second order) relativistic

thermodynamics.

1.3. We plan to prepare the justi�cation of the nonlinear axion magnetohydrodynamics on the base of

extension of the relativistic kinetic theory of the axionically active plasma, using the axionic modi�cation

of the Lorentz force.

2. In the second sector of the future work we plan to study the anomalous regimes of the

magnetohydrodynamic �ows; for this purpose we hope to do the following.

2.1. We hope to consider new models of anomalous accretion of the magnetized matter on the rotating

neutron stars, black holes and dyons, as well as instabilities of a new type caused by the interactions

with the axion �eld.

2.2. We hope to study new anomalous models of dynamo, jets production and turbulent �ows.

2.3. We hope to analyze the solutions describing magnetohydrodynamic waves, shock waves based on

the introduction of the correspondingly generalized Reynolds numbers.

Wish success to our group.
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