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UccnenyroTcs BO3MOKHOCTH KOBAPUAHTHOTO IO OTHOIIEHWIO KAaK K KOOPJAWHATHBIM, TaK W K JIOKAJbHBIM
JIOPEHIIEBBIM TIPEOOPa30BaHUAM (POPMAIM3Ma, PA3BUTOrO PaHee B PaMKaX TeIeNapasyiebHOT0 SKBHBAJIEHTA
06meit Teopun oraocurenbnoctr (TEGR). @opmann3M ncnosb3yercs s u3y9eHns TBUK Y INEHCs ¢ OCTOSHHOM
CKOPOCTHIO 110 OTHOUIEHUIO K Y/JAJIEHHbIM CTATUYECKUM HAOJII0AaTe M LIBAPLUUIU/ILIOBONR Y€PHON JbIPbL.
TTocTpoeHbl KOOPAMHATHO- W JIOPEHI-MHBAPUAHTHBIE TTO0AJIHHBIE MACCa M UMITY/IbC. [Ipuemiembre pe3ysibTaThl
TOJTyI€Hbl, HECMOTPS HA TO, UTO HMCCJEAYyEeMOE PpeIlieHne He MMEeeT, KaK MUHWMYM, BeKTOpoB Kwmmara st
MIPOCTPAHCTBEHHBIX CMenleHuii. Pacdersl BIOIHE aHAJIOTUYHBI PacdeTaM MACChl U MMITYJIbCA, JIJIs JIBUXK YIIEroCs
MaTepUaJbHOrO Mapa B MPOCTpaHcTBe MUHKOBCKOrO, U 3Ta aHAJOIUs UCIIOJIb3YEeTCs CyHIeCTBEHHBIM 00Pa30M.
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Possibilities of the covariant with respect to both coordinate and local Lorentz transformations formalism
developed earlier in the framework of Teleparallel Equivalent of General Relativity (TEGR) are studied.
The formalism is applied to a solution for a moving with constant velocity (with respect to distant static
observers) Schwarzschild black hole. Coordinate and Lorentz invariant global conserved mass and momentum
are constructed. The acceptable results are obtained in spite of the solution under consideration has no, at least,
Killing vectors of space displacements. Calculations are quite analogous to calculating the mass and momentum
of a moving matter ball in Minkowski space, and this analogy is used essentially.
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Introduction

Teleparallel gravity including TEGR (Teleparallel Equivalent of General Relativity) has been
developing very actively over the past few decades |[1H3]. In many researches in teleparallel gravity,
black hole solutions are the most widely used as models to test various developing formalisms. Among
them, Schwarzschild black hole solution is considered in detail [4H8] and is being used to calculate the
mass of a black hole as a conserved global energy or derive energy density of the gravitational field
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measured by an observer. Many of approaches, see for example [7},8], lead either to non-covariant with
respect to coordinate transformations, or non-invariant with respect to local Lorentz rotations quantities.

Nevertheless, a fully covariant formalism can be developed with the use of the Noether theorem.
Thus, in [9H11] fully covariant conserved quantities are constructed in the differential form presentation,
whereas in [[12l{13] they are constructed in the more popular tensorial presentation. Namely, the formalism
of |[12[13] is applied in the present paper. To achieve the covariance of both types, at least, one needs to
introduce a non-dynamical quantity representing the inertial effects - the inertial spin connection (ISC)
that is not determined by the theory itself. In [12,/13], the principle of “turning off” gravity is used just
to determine ISC. It is based on the fact that in the absence of gravity, only inertial effects can remain.
In this case, the curvature tensor vanishes and then Levi-Civita spin connection (L-CSC) expresses only
inertial effects and should be equal to the ISC. Applying the Noether approach and considering the
invariance under diffeomorphisms induced by an arbitrary smooth vector field &, one needs to choose
& in a physically meaningful way. They can be Killing vector fields of the reference geometry, proper
vectors of observers, etc.

For the best of our knowledge, the Schwarzschild solution was not considered in TEGR as a moving
black hole in any applications. Thus, the first goal here is to close this gap and calculate the global
conserved energy and momentum for the moving black hole [14] with making the use of the method
[12,/13]. However, calculating the total mass and total momentum is not an end in itself. Indeed, the
solution [14] is asymptotically flat and these quantities are known and can be obtained by other related
methods in general relativity [15]. Only we would want to demonstrate possibilities of the covariant
formalism [12,/13] and its advantages with respect to other approaches in TEGR. It is the second goal.
It turns out that these calculations are quite analogous to calculating the mass and momentum of a
moving matter ball in Minkowski space. We use this analogy greatly.

1. Covariant Conserved Quantities in TEGR
Let us outline the covariant formalism [12/[13]. The gravitational Lagrangian of TEGR:
o h . o . v L . 1p
EZ % (K ;u/Kp - K pVK U) (11)

is equivalent to the Hilbert Lagrangian up to a divergence. Dynamical variables in TEGR are components
of the tetrad field h®,, which are connected with metric by g,., = nabh“#hby and h = det h*,, where

Nap 18 the Minkowski metric; Greek indexes are spacetime components, Latin indexes a,b,c,... are

tetrad components Latln indexes z ,J,k,... are space components. The contortion tensor is defined
o [e]

as K A A b, Where A“bu = —hy? V., h*, is the L-CSC with V, Levi-Civita covariant

L]
derivative, A“bl, is the teleparallel ISC. Tetrad indexes are replaced by spacetime indexes and inversely
by contracting with h?,, or h,*, for example, K ,, =K %y ho"h,

Simultaneous transformations of tetrad and ISC under local Lorentz rotations are:

R, = A"h°,, (1.2)

A Iabp, = Aac A cd,u,Abd + AacauAbc7 (13)

where A’;(z) is a matrix of a local Lorentz transformation. The L-CSC A“b,, is transformed analogously
to (.) Then it is evidently that K ? v is invariant under local Lorentz transformatlons Because A du
represents the inertial effects of the tetrad it can be suppressed by (|1.3) with appropriate A%, [12}/13].

Considerihe invariance under diffeomorphisms induced by an arbitrary vector field &, one derives

L]
for the action (|1.1) conservation law for the current J%(&):

00T (€) =Va T(€) = 0. (1.4)
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The current itself is expressed through the superpotential:
TE) = 0s.T(€) =V T7(9). (1.5)

L] L]
Noether’s current 7% (&) is the vector density of the weight +1, Noether’s superpotential 7%%(¢) is the
antisymmetric tensor density of the weight +1, in TEGR it is

L] h L] L ] L] L] L]
TPE) =~ 5,7 S =K o+ 8] K "% 05 K. (1.6)

Both 79(¢) and J7%%(€) are locally Lorentz invariant. In the case of spherical symmetry, when r = x!,

conservation laws (1.4) and (1.5) allow us to construct a conserved charge:

_ 3. 0/ ey 2 Soige L 2 % 0Oleo
Ple) = [[dafO = § EaiUe =1 dan s, e, (17)

0

where Y is a hypersurface of constant time ¢ = z” = const, 9% is a boundary of 3, and can be considered

both at finite r = r¢ and at » — oo.
2. A Moving Matter Ball in Minkowski Space

From the start, because the model of moving black hole is similar to moving spherically distributed
matter in Minkowski space, it is instructive to consider such a matter in a flat spacetime with metric:

ds? = —dt* + dz® + dy? + d2>. (2.1)

Here, we denote these coordinates as (t,z,y,2) = (z%,2%) = (2%), where i = 1,2,3. To turn this
spacetime into a reference frame, we add it by static observers which have proper vectors £* =
(—1,0,0,0). Let the matter in the Minkowski space have energy-momentum tensor ©%g, which is
differentially conserved, 9,0%g = 0. Then the current J< = 0°5¢7 is conserved, 9,7 = 0, as well,
and its components present the energy density J° = 0%¢° and the momentum density J° = ©%;¢°

measured by the introduced above observers. One recognizes that the definition of the current J*(§)
in (1.4) and (L.5) is a generalization to TEGR of the simplest definition in Minkowski space, and the

L]
components of 7%(£) have the analogous interpretation for observers with proper vectors &.
Assuming the static spherically symmetric distribution of matter, one has for the current

Js = [p(r), 0, 0, 0], (2.2)
where p(r) = J2(r) = ©%/(r)£ is just the energy density, r? = 22 + y2 + 22 and
x =rsinfcos¢; y=rsinfsing; z=1rcosdqo. (2.3)

Suppose that matter distributed on the hypersurface ¥ of a constant time is bounded by 9% that is a
sphere r = ro. Then the mass/energy of such a matter ball can be calculated as

E, = ///Ed:vdydzjg(r) = ///dedydzp(r) = /OTO/OTF/:Tr drdfde p(r)r? sinf = M. (2.4)

Let us assume that an absolutely identical matter ball is moving relatively to the frame {x“}
connected with (2.1) with the constant velocity v along the axis 0 + 2. The proper coordinates of the
moving object are connected with those in (2.1)) by the Lorentz transformation:

t=qt-vz); T=rv(w-0t); Y=y; Z=2 (2.5)

where v = (1 — v2)~2. In analogy with the reference frame {2} determined by (2.1) the moving ball
has a proper (its own) reference frame {Z*}.
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To illustrate the below calculations related to a moving matter ball we consider a simpler case. Let
the moving sphere be filled by N point particles with masses m and static in the proper frame {Z“},
thus the total mass in {Z%} is My = Nm. After that, let us find the mass of such a moving object in
the frame {z*}. First, the moving sphere undergoes relativistic compression and its volume decreases
~ times. Second, by effects of special relativity, energy and momentum of each particle with mass m
becomes ym, and yvm. At last, third, because the number of particles N is conserved the concentration
of particles increases in v times. For this simplest model it is clear that the first and third factors are
compensated. Then, the evident result for the total mass and momentum of the moving object becomes
M, = N(ym) = yM; and P}, = N(yom) = yo M.

The above logic is working in the case of continuous matter distribution as well. Thus in the proper
frame {Z“} of the moving ball the current has the form:

j? = [p(?)7 0, 0, O]a (2.6)

where 72 = 72 + 72 + 22 and p(7) is the same function like in (2.2). Now, let us transform from the frame
{z*} to the frame {z}. The first factor of the relativistic compression of the sphere is to be taken into
account in boundaries of integration. By the second factor, the components of the vector after
Lorentz transformations become

T = [vp(T), yvp(T), 0, 0] (2.7)

in the frame {2} in coordinates (t,x,v, z), where 7> = v2(x — vt)? + 32 + 22. By the third factor, due
to the relativistic compression the components of have to be multiplied by v under the integration
in the compressed boundaries.

Thus, to obtain the total mass of the moving matter ball one integrates

o= [ [ fartvts 6000 = [ [ [ttty = m [Parsraoty <o e

where the boundary 9% of X is defined as v2x2 +y%+ 22 = r calculated at the moment ¢t = 0 without the
loss of generality. After the simple redefinition 2’ = vy one has z'? +y? + 22 = r'? and the boundary 9%
is defined as usual ' = rg, thus the last integration in repeats exactly . The same, following
the analogy with the example of point particles, where the total momentum is obtained by a simple
summation, the total momentum of the moving matter ball is obtained by integration of a momentum
density J! (7) multiplied by ~

// drdydz (7T 1, ( —'yv// dx’ dydzp(r’ —47?71)/ dr' r?p(r') = yuM. (2.9)

First, the results (2.8) and (2.9) are in the full correspondence with the conclusions of special relativity.
Second, namely the above prescription will be used to calculate the global mass and momentum of the
moving black hole because the covariant formalism of [12}[13] allows us to realize this program.

3. A Moving Black Hole in TEGR

Analogously to the matter ball in Minkowski space we begin to study the Schwarzschild solution
in a static presentation. Following [14], we take the Schwarzschild metric in isotropic coordinates:

ds® = —a?(r)dt* + 4 (r) (da” + dy® + dz°), (3.1)

where a(r) = (1 - 35)/(1+ 2£), ¢(r) =1 + 3L and again % 4 y* + 2% = 2. The most convenient is to
choose the tetrad in diagonal form:

B, = ding [a(n), 42 (1), 0 (1), 42(1)] (3:2)
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Non-zero components of L-CSC jl“b,, = —hp? %V h®, calculated for 1' and 1} are:

j k
0() _OEA _MJ}’L 1 . O;A o OI;‘A o MI 1
A=A = r3 w4(T)7 Apy=—A"%=- 3 1/}(7')7 (33)
where the indexes with “hat” are tetrad components and indexes without “hat” are spacetime

components; here, ¢ = (z!,2%,2%) = (z,y, z). “Turning-off gravity” in L-CSC (3.3) is provided by

the condition M — 0 what leads to vanishing L-CSC giving for all the components of ISC, ;1 “pu = 0.
Within the definitions in [1,/8,/12], a tetrad with a related zero ISC is called a “proper tetrad”. For

the L-CSC 1) and zero ISC the formulae 1} give the teleparallel superpotential é’ +*?. non-zero
components of which are:

éooz':_éoio:_szi L é‘ik:_é‘ki:Mka 1
rdps(r)’ ' ' 2rt a(r)ys(r)

To calculate the total mass of the Schwarzschild black hole, it is more convenient to take the

(3.4)

spherical coordinates. Therefore, let us provide the standard coordinate transformation (2.3) after that
the metric (3.1) acquires the form:

ds* = —a?(r)dt? +*(r) [dr2 + 72(d6* + sin® 9d¢2)] . (3.5)
We take again the convenient diagonal tetrad for (3.5):
he, = diag [a(r), ¥ (r),rp* (r), r¢p* (r) sin 6] . (3.6)

For the metric (3.5) and tetrad (3.6), the non-zero components of L-CSC are

04 Oio :Aiﬁ? = %wl(r)? A 1QQO:A_ A 212 O:Agw(lr) -1 (3.7)
Algy=— A% =—a(r)sinb; A?55=— A3, = —cosb,
where now z¢ = (21,22, 23) = (1,0, ¢).
“Turning oft” gravity by M — 0 in (3.7) gives ISC, non-zero components of which are:
A1Q2:_A212:—1; Aig3=—A313=—Sin9; A233=—A3Q3=—0050. (3.8)
Then, formulae 1| for the L-CSC l) and ISC 1' give non-zero components of 5‘ LLR
. . 2M 1 . . . . M2 1
01 10 12 21 13 31
— —_ . = — = = — = —— . 39
SO TS E gyt S TS S S = ey )
After applying the transformations ((1.2)) and (1.3)) to the tetrad (3.6) and ISC (3.8)), where
1 0 0 0
Ay — 0 sinfcos¢ cosfcos¢p —sing (3.10)

0 sinfsing cosfsing cos¢
0 cos 6 —sinf 0

the obtained ISC vanishes and the obtained tetrad becomes a proper tetrad. This proper tetrad after
the coordinate transformations becomes equal to the proper tetrad and the superpotential
goes to . In the framework of the covariant formalism [12}|13], arbitrary pairs of tetrads and
ISCs connected by smooth coordinate and/or local Lorentz transformations present the same gauge in
terminology of [16,/17], and can be used in calculations to obtain the same result. Here, in calculations,
we use the gauge presented by the pair of tetrad and zero ISC (or by the pair of tetrad and

ISC ) onlyE|

Hn spite of evident advantages of covariant formalism the ambiguity related to constructing conserved quantities
remain. The reason is that ISC cannot be chosen in an unique way even by the “turning off” gravity principle. Recently,
this problem has been studied in detail in [16}/17].
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To calculate the global mass/energy of a black hole, it is necessary to determine the observers in
the same way as it was done in the Minkowski space. A spacetime with metric , or , and with
the 4-vectors of static observers

€7 =[-a!(r), 0, 0, 0] (3.11)

presents a static reference frame {z*}. Then, (1.6) with (3.9) gives the unique non-zero component of
the Noether superpotential

5 o — _ j 10— 2k~ M) (r) sin 6, (3.12)
and (|1.5) gives the Noether current in the form:

J ¢ = [26"1M4/(r)sin6, 0, 0, 0] . (3.13)

Because j % is a vector density, see and 1} the energy density in 1} presented in spherical

L]
coordinates can be rewritten as j V= p( )r2 sin9 Where p(r ) is the energy density in the Cartesian

coordinates of (3.1). Thus, substituting (3.13) and ( into (| we get

= lim / / / dadydzp(r) = lim / / / drd&quj lim deddﬁgl = M, (3.14)
ro—00 T —>00 070 Jox

where again the boundary 9% of ¥ presents a sphere r = rg, and then one takes the limit ry — oc.
The result can be interpreted as the global mass of the black hole, since at rg — oo the 4-vector
asymptotically tends to the timelike Killing vector £ = (-1, 0, 0, 0). If the charge is
calculated at finite r = rg, it can be interpreted as the energy measured by observers resting at r = rq.
The acceptable result shows us that our choice of the gauge in the terminology just
corresponds to the problem of calculating the global mass.

To describe the moving black hole the authors apply the transformation to the barred
metric (3.1) and obtain the metric of the moving black hole in the frame {z*}:

ds? = —@2dt? + v (" — o0?)(dx + Bdt?)? + *(dy? + d2?). (3.15)

Her a=ay 11—/t 12 8= —v(l — ? /) (1 — a?v? /)L, a = oF) and ¢ = 9 (7), where

= v2(x — vt)? + y? + 22, Let us turn to the proper reference frame of the movmg black hole {Z*}
deﬁned by the barred metric and related observers analogous to . Repeating all the steps
done for the static black hole and preserving the static gauge which is obtalned relatively to the black
hole, we get in the coordinates (¢,T,7,%z):

g7 =), 0, 0, 0], (3.16)

where the dependence 5(?) is exactly the same as defined for and 72 = T2 + 72 + 2. We emphasize
that in the frame {Z%} we, of course, repeat the result : E, = M for the global mass.

Because the gauge is already chosen, and the solution is obtained from the barred metric
with the use of , the covariant formalism allows us to transform the components of the
current (3.16]) with the use of to the frame {z“}:

T m() = [75(?), yub(F), 0, 0}. (3.17)

Formally coincides with the current for a matter ball in Minkowski space. Likewise, the
integration for the components of actually repeats the integration in and . The only
difference is that with making the use of we go to the surface integration, and then take the limit
r’ = rg — oco. Finally, we get the global mass and momentum for the moving black hole:

E,, = v M; Pl = ~uM. (3.18)
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Conclusion

Let us discuss the results. First, the transformation applied to (3.1) presents the global
Lorentz boost for distant observers. Thus, the results , presenting the global (at infinity) conserved
quantities, can be interpreted as quite acceptable ones.

Second, the result was obtained by choosing , or , with observers . The same
result could be obtained with the use of the Killing vector £* = (-1, 0, 0, 0) instead of (3.11)). However,
following this logic, to calculate the momentum density, a space-like displacement Killing vector would
be needed, but it does not exist for the solution under consideration. Here, following the analogies in
Minkowski space we interpret components of the conserved current for a static black hole as components
of the energy-momentum vector when energy density and momentum density are measured by local
observers. Components of the current for a moving black hole are obtained by related transformation
(2.5) with the following integration and final results .

Third, in [17] it was found that for the same solution, the “turning-off gravity” in different frames
can lead to different ISCs, including those which give unacceptable results. Here we have used the only
gauge in which tetrad is a proper tetrad, i.e. associated with vanishing ISC, and this gauge leads
to physically meaningful results and (3.18). Nevertheless, the problem of determining different
gauges for the solution is interesting, and its study is carried over to the future.
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