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Introduction

This paper is a discussion of the structure of the Dirac equation. Section 2 discusses how the
nilpotent and Majorana operators arise naturally. This section provides a link between our work and
the work of Peter Rowlands [10]. We end this section with an expression in split quaternions for the
Majorana Dirac equation in one dimension of time and three dimensions of space. The Majorana Dirac
equation can be written as follows:

(0/0t + 1m0 /0x + €0/Jy + énd/0z — énnm)p =0

where 7 and € are the simplest generators of iterant algebra with n? = €2 = 1 and ne + en = 0,
and ¢€,7 form a copy of this algebra that commutes with it. This combination of the simplest Clifford
algebra with itself is the underlying structure of Majorana Fermions, forming indeed the underlying
structure of all Fermions. In Section 3 we apply our methods to the Majorana Dirac Equation and
give actual real solutions to the equation. These solutions inevitably make direct use of the Majorana
Fermion Clifford algebra. This shows explicitly that Fermions and Majorana Fermions are related by
the algebraic transformation between Fermion and Clifford algebra. In Section 4, we end the paper in
one dimension of space and one dimension of time. We refomulate the Dirac equaition for 1+1 spacetime
in general, and show that it is related to a Fermionic Clifford algebra that is described in this section.
Specializing to a representation of this algebra we give explicit solutions to the Dirac equation and
discuss their relationship with the Feynman checkerboard [1}2].
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1. The Dirac Equation and Majorana Fermions

We construct the Dirac equation. The algebra underlying this equation has the same properties as
the creation and annihilation algebra for fermions. It is by way of this algebra that we will come to the
Dirac equation. If the speed of light is equal to 1 (by convention), then energy F, momentum p and
mass m are related by the (Einstein) equation

E? :p2+m2.

Dirac constructed his equation by looking for an algebraic square root of p? +m? so that he could have a
linear operator for E that would take the same role as the Hamiltonian in the Schrédinger equation. We
will get to this operator by first taking the case where p is a scalar (we use one dimension of space and
one dimension of time.). Let F = ap+ fm where « and /3 are elements of a a possibly non-commutative,
associative algebra. Then

E? = o?p* + 82m? 4 pm(afB + fa).

Hence we will satisfy E? = p2 +m? if a® = 82 = 1 and af8 + Ba = 0. This is a Clifford algebra pattern.

We have the Dirac equation E = ap + fm. Because the quantum operator for momentum is
p = —id/0z, the operator for energy is E = 10/0t, and the operator for mass is /i = m, the Dirac
equation becomes the differential equation below.

10y /0t = —iady [0z + Bmab.

Let O = i0/0t 4+ iad/dx — fm so that the Dirac equation takes the form Oy (z,t) = 0.
Note that Qe!P==Et) — (E — ap — Bm)eipr—E1),

We let A = (E —ap— fm) and let U = ABa = (E — ap — fm)Ba = faE + Bp — am, so that
U? = —-E*+p*+m?=0.

This nilpotent element leads to a (plane wave) solution to the Dirac equation as follows: We have shown
that Oy = Av for ¢ = €P*=F% Tt then follows that O(BalABay) = ABalABayy = U?p = 0, from
which it follows that ¢ = Ue'®P*—F%) is g (plane wave) solution to the Dirac equation.

This calculation suggests that we should multiply the operator O by Sa on the right, obtaining
the operator
D = OBa =ifad/ot +i80/0x — am,

and the equivalent Dirac equation Dt = 0. For the specific ¢ above we will now have D(U ei(p“_Et)) =
UZ2e'Pr=Et) — (). This idea for reconfiguring the Dirac equation in relation to nilpotent algebra elements
U is due to Peter Rowlands |10]. Rowlands does this in the context of quaternion algebra. Note that the
solution to the Dirac equation that we have found is expressed in Clifford algebra. It can be articulated
into specific vector solutions by using a matrix representation of the algebra.

We see that U = BaFE + Bp — am with U? = 0 is really the essence of this plane wave solution
to the Dirac equation. This means that a natural non-commutative algebra arises directly and can be
regarded as the essential information in a Fermion. It is natural to compare this algebra structure with
algebra of creation and annihilation operators that occur in quantum field theory.

If we let ¢ = ¢/P*+E) (reversing time), then we have Dy = (—faE + Bp — am)y = Uty, giving a
definition of U corresponding to the anti-particle for Ur.
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We have U = faFE + Bp — am and Ut = —BaE + Bp — am.

Note that here we have (U + U")? = (28p 4+ am)? = 4(p? + m?) = 4E? and (U — U")? = —(2BaFE)? =
—4F?,

We have that U? = (U")2 = 0 and UUT + U'U = 4E?. Thus we have a direct appearance of the
Fermion algebra corresponding to the Fermion plane wave solutions to the Dirac equation. Furthermore,
the decomposition of Uand U' into the corresponding Majorana Fermion operators corresponds to
E? = p*+m?

Normalizing by dividing by 2F we have A = (8p + am)/E and B = ifa. so that A? = B? = 1 and
AB + BA = 0. then U = (A + Bi)E and U = (A — Bi)E, showing how the Fermion operators are
expressed in terms of the simpler Clifford algebra of Majorana operators (A and B generating the split
quaternions).

1.1. Writing in the Full Dirac Algebra

We have written the Dirac equation in one dimension of space and one dimension of time. We
now boost the formalism directly to three dimensions of space. We take an independent Clifford algebra
generated by o1, 09,03 with 01-2 = 1for ¢ =1,2,3 and o;0; = —0oj0; for i # j. Now assume that «
and § as we have used them above generate an independent Clifford algebra that commutes with the
algebra of the o;. Replace the scalar momentum p by a 3-vector momentum p = (p1,p2,ps) and let
peo =pio1 + pa0a + p3os. We replace 9/0z with V = (9/0x1,0/0xa,0/0xs) and Op/Ox with V e p.

We then have the following form of the Dirac equation.
10y /0t = —iaV e o) + Smap.

Let O =10/0t +iaV e o — Sm so that the Dirac equation takes the form Oy(x,t) = 0.

In analogy to our previous discussion we let 9 (z, t) = ' (P**=F%) and construct solutions by first applying
the Dirac operator to this . The two Clifford algebras interact to generalize directly the nilpotent
solutions and Fermion algebra,that we have detailed for one spatial dimension, to this three dimensional
case. To this purpose the modified Dirac operator is

D = ifad/0t+ SV e g —am.

And we have that Dy = Ut) where U = BaF + pe o — am. We have that U? = 0 and U1 is a solution
to the modified Dirac Equation, just as before. And just as before, we can articulate the structure of
the Fermion operators and locate the corresponding Majorana Fermion operators.

1.2. Majorana Fermions

There is more to do. We now discuss making Dirac algebra distinct from the one generated by
a, 8, 01,02, 03 to obtain an equation that can have real solutions. This was the strategy that Majorana [3]
followed to construct his Majorana Fermions. A real equation can have solutions that are invariant
under complex conjugation and so can correspond to particles that are their own anti-particles. We will
describe this Majorana algebra in terms of the split quaternions € and 7. For convenience we use the

(T ) ()

matrix representation given below.
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Let € and 1) generate another, independent algebra of split quaternions, commuting with the first algebra
generated by € and 7. Then a totally real Majorana Dirac equation can be written as follows:

(98/0t + 1m0/ 0x + €d/dy + énd/0z — énmm)yp = 0.

To see that this is a correct Dirac equation, note that

E = QuPy + O[ypAy +a.p. + Bm
(Here the “hats” denote the quantum differential operators corresponding to the energy and momentum.)
will satisfy
E? =p,* +p,)" +p" +m?
if the algebra generated by a,, oy, ., has each generator of square one and each distinct pair of
generators anti-commuting. From there we obtain the general Dirac equation by replacing E by i0/0t,
and p, with —id/0x (and same for y, z).

(i0/0t + i 0/0x 4 i0y,0/0y + ia.0/0y — Bm)y = 0.

This is equivalent to

(0/0t + 0, 0/0x + ;0 /0y + a.0/0y + ifm)yp = 0.

Thus, here we take
QO = 1),y = €, Q= €n), § = ién,

and observe that these elements satisfy the requirements for the Dirac algebra. Note how we have a
significant interaction between the commuting square root of minus one (¢) and the element én of square
minus one in the split quaternions. This brings us back to considerations about the source of the square
root of minus one. Both viewpoints combine in the element 5 = iénn that makes this Majorana algebra
work. Since the algebra appearing in the Majorana Dirac operator is constructed entirely from two
commuting copies of the split quaternions, there is no appearance of the complex numbers, and when
written out in 2 x 2 matrices we obtain coupled real differential equations to be solved. This is a beginning
of a new study of Majorana Fermions. For more information about this viewpoint, see [9]. In the next
section we rewrite the Majorana Dirac operator, guided by nilpotents, obtaining solutions that directly
use the Majorana Fermion operators.

2. Nilpotents, Majorana Fermions and the Majorana-Dirac Equation

Let D = (0/0t 4+ 1md/dx + €0/0y + énd/dz — éfmm). In the last section we have shown how D can
be taken as the Majorana operator through which we can look for real solutions to the Dirac equation.
Letting 1(z,t) = eP*" =% we have

Dy = (—iE + i(inps + epy + énp,) — nmm)p.
Let
I' = (—iE + i(mps + €py + énp.) — éfmm)
and
U = enl’ = (i(—neE — fjepy + npy — €ép.) + eénm).

The element U is nilpotent, U? = 0, and we have that U = A + iB, AB + BA = 0, A = eéim,

B = —neE — fjepy + npy — €ép., A> = —m?, and B* = —E? 4+ p2 4 p2 4 p2 = —m>.

Letting V = enD, we have a new Majorana Dirac operator with V¢ = U so that V(Uv) = U2y = 0.
Letting 6 = (p e r — Et), we have Uy = (A + Bi)e? = (A + Bi)(Cos(6) + iSin()) = (ACos(f) —
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BSin(0)) +i(BCos(0) + ASin(0)).

Thus we have found two real solutions to the Majorana Dirac Equation:
® = ACos(0) — BSin(0),
U = BCos(0) + ASin(6)
with § = (per — Et) and A and B the Majorana operators
A = eénm,

B = —neE — nepy + npy — €€p-.

Note how the Majorana Fermion algebra generated by A and B comes into play in the construction
of these solutions. This answers a natural question about the Majorana Fermion operators. Should
one take the Majorana operators themselves seriously as representing physical states? Our calculation
suggests that one should take them seriously.

In other work [4H7] we review the main features of recent applications of the Majorana algebra and
its relationships with representations of the braid group and with topological quantum computing. The
present analysis of the Majorana Dirac equation first appears in our paper [9].

3. Spacetime in 141 Dimensions

We begin this section by discussing an algebra that is directly related to Clifford algebra. As we
shall see, this algebra is also inherent in the Dirac equation when we use light cone coordinates.

3.1. Clifford algebra and Fermion algebra.

In two by two matrix algebra, we can take

-1 0 0 1 a+b
€= = .
o 1,7 {10
Here
0 0
a= b= 01 .
1 0 0 0
Thus
ab — 0 0 ba = 1 0
0 1 0 0
so that
a2:b2:0,
a+b=mn,
a—b=en,
ab+ba =1,

ab — ba = e.
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More abstractly, suppose that we have a Clifford algebra generated by elements ¢ and 7 with

€2 =n? =1 and en + ne = 0. Then we can define new elements a and b by the equations

n=a+b,
en=a—b.

This means that !
a = 5(1 + 6)777

1
b= 5(1 - 6)777

from which it follows that

a?=0b%>=0,ab+ba = 1.
Note that we are given that the starting Clifford algebra is associative and so further identities such as

aba = a,bab = b, abab = ab, baba = ba

follow easily from the given identities. We call an associative algebra generated by a,b with

a?=b>=0,ab+ba =1

a Fermion algebra since the annihilation, creation algebra for Fermions in quantum theory satisfies
these identities. We see here that Clifford algebras (with an even number of generators) and Fermion
algebras are interchangeable via the above transformations. This fact has been used by writers on Clifford
algebras, |11] since it is useful to have projector properties such as (ab)(ab) = ab.

Remark. The above construction of Fermion algebra from Clifford algebra occurs without invoking an
extra commuting square root of negative unity. It is common in physical applications to use a parallel

construction involving i where i2 = —1 and i commutes with all elements of the algebra. One can then

define ¢ = 3(n + ie) and ¢! = 1(n — ie). It follows that ¢* = (¥1)? = 0 and ¢! + 4Ty = 1, and one
has a Fermion algebra with complex conjugation constructed in relation to a Clifford algebra. Another
relation with a commuting ¢ occurs if we take

a

(i/2)(af + B)

b= (i/2)(aB — B)
where a and 8 form a Clifford algebra with a? = 82 = 1 and a8 + Ba = 0. Then a and b satisfy the

Fermion relations and

ab+ba =1,
ab —ba = «,
but
a+b=1iaf,
a—b=1i0.
Notice that (iaf)? = +1 while (i8)> = —1. Thus we can regard this as a re-writing of the previous
pattern with
iaf =1
and
i =en
so that

a=pfa=—Ppaf =iflaf =em=c.
This means that this Fermion algebra can occur with or without the explicit commuting square roof of
negative unity, 7.
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3.2. The Dirac Equation in Light Cone Coordinates
Recall the translation of operators to light cone coordinate operators.
E =i0/0t = (i/2)(0/0r + 0/0l)
p=(1/i)0/0x = (1/2i)(0/0r — 0/0l)
Here is the nilpotent version of the Dirac operator as we have formulated it.
D = afE + Bp — am
We translate this operator into light cone coordinates.
D = af((i/2)(0/0r +0/0l)) + B((1/2i)(0/0r — 0/0l)) — am

D =i[(aB + B)/2]0/0l + i[(aB — B)/2]0/dr — am

Thus
D = AJ/ol + BI/Or — am

A= (i/2)(af +P)
B =(i/2)(ap = p)

As the reader can see, we arrive at algebraic coefficients that we have described above as the Fermion

algebra associated with the Clifford algebra generated by a and f.
A+ B =iap

A-B=iB

Further relations take the form:
AB+BA=1,AB-BA=a,A>=B*=0,0>=1

Aa=—-A,aA=A,Ba=B,aB=—-B

Thus
Aa+aA=0,Ba+aB =0
AB+BA=1i,BB+ B =—i
Let
b = pH(rX 1Y)
where
X=p—F
and
Y=p+ FE.
Thus
XY = —m?.
Then
Dy = U
where

U=—-iAX +iBY — am.
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Thus
U? = ABXY + BAXY +m?> = XY +m? =p> — E*+m? =0.

Note that with
Ul = —AY +iBX — am

we have

Uh?=o0

and
UUY + U'U = 4E?

3.3. Solving the 1+1 Dirac Equation
The (real valued) Majorana version of the Dirac operator
D = AJ/0l + BO/Or —am

that we have discussed above can be taken via the representation

() (o) (0)

Then
ap=|[ 2V ,BA = L0 ,AB — BA = SR
0 1 0 0 0 1
Letting
0=rX-1Y,
and
S = 8in(0),C = Cos(©),

we have

Up=U(C+1iS)=(AXS —BYS —amC)+i(—AXC + BYC — amS).
In the matrix representation we find

AXS — BYS — amC = ( mC - —YS )

XS5 —-mC

And from this, letting
¢1 = mC, ¢2 =XS

we have
O /0r = —mX S = —may
and
Oy /Ol = —XY C = m?C = ma)y
Thus
8¢1/8r = —mwg
8’@/12/61 = m¢1

Note that these equations are satisfied by
Y1 = —mSin(—(E —p)r — (E+p)l),

Y2 = (E + p)Cos(—(E — p)r — (E + p)l)
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exactly when E? = p?4+m? as we have assumed. It is quite interesting to see these direct solutions to the
Dirac equation emerge in this 1 + 1 case. The solutions are fundamental and they are distinct from the
usual solutions that emerge from the Feynman checkerboard Model [11/2]. It is the above equations that
form the basis for the Feynman checkerboard model that is obtained by examining paths in a discrete
Minkowski plane generating a path integral for the Dirac equation.

Remark. Note that a simplest instance of the above form of solution is obtained by writing

oo

) = cos(r+1) +isin(r +1) = S (V=1)" 3

n=0 i+j=n

Then with 15 = cos(r 4+ 1) and 11 = sin(r 4+ 1) we have 9 /0l = 1, Oth2/Or = —1)1, solving the Dirac
equation in the case where m = 1.
00 P+l gk 00 kRt 00 ke
Remark. Let Yr = 307 (—1)* s Yo = Zico(~D 5 teron Yo = Zieo(—1)F 5 - Then
1 = Yo + Y1 and P = Yy — YR give a solution to the Dirac equation in light cone coordinates as we
have written it above with m = 1 : 991 /0l = 19,0 /dr = —ib1. These series are shown in [2] to be
a natural limit of evaluations of sums of discrete paths on the Feynman checkerboard. The key to our
earlier approach is that if one defines
(@)@ —A)(z—24)---(z - (k-1)A)

clal; - - ,

Then C[A]} takes the role of %’T for discrete different derivatives with step length A and it can be
interpreted as a choice coefficient. A Feynman path on a rectangle in Minkowski space can be interpreted
as two choice of k or k + 1 points along the r and [ edges of the rectangle. Thus the products in the

Pkt
RG]
in a limit where there are infinitely many such paths. The details are in our paper [2]. The solutions we

limit expressions of the form or %le—k, correspond to paths on the checkerboard with k corners

have given above, motivated by the Majorana algebra, are related in form to these path sum solutions.
Our solutions contain more information, related to the factorization (E — p)(E + p) = E? — p?> = m2.
In the usual checkerboard solution the propagators only know about the mass and not its factorization
relative to energy and momentum. More work needs to be done to fully understand the relationship of

solutions to the Dirac equation and path summations.
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